【題目】是各項均為正數(shù)的數(shù)列的前項和,且.

1)求的值;

2)設(shè),且數(shù)列的前項和滿足對任意正整數(shù)恒成立,求實數(shù)的取值范圍;

3)設(shè),問:是否存在正整數(shù),使得對一切正整數(shù)恒成立?若存在,請求出實數(shù)的值;若不存在,請說明理由.

【答案】1,;(2;(3)存在,

【解析】

1)令,可求出,令,可求出,進而可求得的值;

2)先求出的表達式,進而可求出的表達式,再結(jié)合,可求出,并得到,從而可知,即可求出的取值范圍;

3)由,可知當時,,當時,,從而可知時,對一切正整數(shù)恒成立.

1)當時,,解得

因為數(shù)列各項均為正數(shù),所以.

時,,又,解得

,解得.

2)因為

所以,又,所以.

時,

時,.

時也符合上式,所以.

,

所以.

所以,解得.

3)因為,

所以.

時,,所以,

時,,所以.

所以時,對一切正整數(shù)恒成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)若不等式 對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成小塊地,在總共小塊地中.隨機選小塊地種植品種甲,另外小塊地種植品種乙.

)假設(shè),求第一大塊地都種植品種甲的概率.

)試驗時每大塊地分成小塊.即,試驗結(jié)束后得到品種甲和品種乙在各個小塊地上的每公頃產(chǎn)量(單位)如下表:

品種甲

品種乙

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認為應(yīng)該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線Cρsin2θ2acos θ(a>0),過點P(2,-4)的直線l (t為參數(shù))與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 經(jīng)過點P(2,1),且離心率為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設(shè)O為坐標原點,在橢圓短軸上有兩點MN滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點,如果經(jīng)過定點請求出定點的坐標,如果不經(jīng)過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;

(Ⅱ)若關(guān)于的不等式的解集為,當時,求的最小值;

(Ⅲ)對任意的,,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體的底面是邊長為的菱形, 底面 ,且.

(1)證明:平面平面

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, ,平面底面, 中點, 是棱上的點, .

(Ⅰ)若點是棱的中點,求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)若二面角,設(shè),試確定的值.

查看答案和解析>>

同步練習冊答案