【題目】如圖,四棱錐中,平面,底面是正方形,且,中點.

1)求證:平面;

2)求二面角的余弦值.

【答案】(1)證明見解析(2)

【解析】

1)由平面,可得,再由正方形中,得,由線面垂直的判定定理可得平面,從而可得,再由等腰三角形的性質(zhì)可得,可得證;

2)以點為坐標原點,分別以直線軸,軸,軸,建立空間直角坐標系,再分別求出面的一個法向量和平面的一個法向量,再由向量的夾角運算可求得二面角的余弦值.

解:(1)證明:平面,

又正方形中,平面,

平面,,的中點,

所以,平面

2)以點為坐標原點,分別以直線軸,軸,軸,建立如下圖所示的空間直角坐標系,由題意知:

,

設(shè)平面的法向量為,則,

,令,得到,,

平面,,

又正方形中,,平面

,

平面的一個法向量為,

設(shè)二面角的平面角為,由圖示可知二面角為銳角,

.二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,動點在線段上運動,且有.

(1)若,求證:;

(2)若二面角的平面角的余弦值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若有兩個相異零點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列、滿足 (N*),則稱為數(shù)列的“偏差數(shù)列”.

(1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說明理由;

(2)若無窮數(shù)列是各項均為正整數(shù)的等比數(shù)列,且,為數(shù)列的“偏差數(shù)列”,求的值;

(3)設(shè)為數(shù)列的“偏差數(shù)列”,,若對任意恒成立,求實數(shù)M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,過的直線交橢圓于兩點,若橢圓C的離心率為,的周長為8.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以為直徑的圓恰好經(jīng)過坐標原點?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進行了統(tǒng)計,如下表所示:

捕魚量(單位:噸)

頻數(shù)

2

7

7

3

1

根據(jù)氣象局統(tǒng)計近20年此地每年100天的捕魚期內(nèi)的晴好天氣情況如下表(捕魚期內(nèi)的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):

晴好天氣(單位:天)

頻數(shù)

2

7

6

3

2

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船一天的捕魚量的平均數(shù);

(Ⅱ)若以(Ⅰ)中確定的平均數(shù)作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.

①估計一艘上述噸位的捕魚船一年在捕魚期內(nèi)的捕魚總量;

②已知當?shù)佤~價為2萬元/噸,此種捕魚船在捕魚期內(nèi)捕魚時,每天成本為10萬元/艘;若不捕魚,每天成本為2萬元/艘,請依據(jù)往年天氣統(tǒng)計數(shù)據(jù),估計一艘此種捕魚船年利潤不少于1600萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),若對任意的,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,點,,對角線交于點P.

1)求直線的方程;

2)若點EF分別在平行四邊形的邊上運動,且,求的取值范圍;

3)試寫出三角形區(qū)域(包括邊界)所滿足的線性約束條件,若在該區(qū)域上任取一點M,使,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年數(shù)學(xué)競賽邀請了一位來自星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會的題目就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題,然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答得題目則跳過(例如,他可以按照9、8、7、4、32、1、5、610的次序答題),這樣所有題目均有作答,則這位選手可能的答題次序有______.

查看答案和解析>>

同步練習(xí)冊答案