若x2+6<5x,y=x2+5x+6,則有( 。
A、y為任意實(shí)數(shù)
B、0<y<20
C、20<y<30
D、y>30
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先解出不等式x2+6<5x得到2<x<3,根據(jù)該二次函數(shù)在(2,3)上的單調(diào)性求出y的取值范圍.
解答: 解:解x2+6<5x得,2<x<3;
二次函數(shù)y=x2+5x+6的對(duì)稱軸為x=-
5
2
;
∴該函數(shù)在(2,3)上單調(diào)遞增;
∴20<y<30.
故選C.
點(diǎn)評(píng):考查解一元二次不等式,以及判斷二次函數(shù)在一區(qū)間上的單調(diào)性,并根據(jù)單調(diào)性求y的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈R,sinx>0”的否定是(  )
A、?x∈R,sinx≤0
B、?x∈R,sinx≤0
C、?x∈R,sinx<0
D、?x∈R,sinx<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知雙曲線的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)分別是F1(-2,0),且雙曲線經(jīng)過點(diǎn)P(2,3).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)點(diǎn)A是雙曲線的右頂點(diǎn),若直線l平行于直線AP,且l與雙曲線交于M,N兩點(diǎn),若|
AM
+
AN
|=4,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是雙曲線
x2
4
-
y2
16
=1右支上的任意一點(diǎn),經(jīng)過點(diǎn)P的直線與雙曲線的漸近線分別交于A、B兩點(diǎn),△AOB的面積是9.且
AP
=λ
PB
(λ>0),則λ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnx
1+x
-lnx,則有下列結(jié)論中錯(cuò)誤的是( 。
A、?x0∈R,f(x)=0
B、若x0是f(x)的最大值點(diǎn),則f(x0)=x0
C、若x0是f(x)的最大值點(diǎn),則f(x0)<
1
2
D、若x0是f(x)的極大值點(diǎn),則f(x)在(x0,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)的商品A每件售價(jià)為5元時(shí),年銷售10萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高一元,銷量相應(yīng)減少1萬(wàn)件,要使銷售收入不低于原銷售收入,該商品的銷售價(jià)格最多提高多少元?
(2)為了擴(kuò)大該商品的影響力,公司決定對(duì)該商品的生產(chǎn)進(jìn)行技術(shù)革新,將技術(shù)革新后生產(chǎn)的商品售價(jià)提高到每件x元,公司擬投入
1
2
(x2+x)
萬(wàn)元作為技改費(fèi)用,投入
x
4
萬(wàn)元作為宣傳費(fèi)用.試問:技術(shù)革新后生產(chǎn)的該商品銷售量m至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+x,x≤0
-x2,x>0
若f(f(t))≤2,則實(shí)數(shù)t的取值范圍是( 。
A、(-∞,
2
]
B、[
2
,+∞)
C、(-∞,-2]
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+8x+ay-5=0經(jīng)過拋物線E:x2=4y的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

準(zhǔn)線方程x=-1的拋物線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案