15.某路口人行橫道的信號(hào)燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)的時(shí)間為50秒,若一行人來(lái)到該路口遇到紅燈,則至少需要等待20秒才出現(xiàn)綠燈的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

分析 求出一名行人前30秒來(lái)到該路口遇到紅燈,即可求出至少需要等待20秒才出現(xiàn)綠燈的概率.

解答 解:∵紅燈持續(xù)時(shí)間為50秒,至少需要等待20秒才出現(xiàn)綠燈,
∴一名行人前30秒來(lái)到該路口遇到紅燈,
∴至少需要等待20秒才出現(xiàn)綠燈的概率為$\frac{30}{50}$=$\frac{3}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查概率的計(jì)算,考查古典概型,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.由曲線y=$\frac{1}{x}$,直線y=x及x=3所圍成的圖形的面積是( 。
A.4-ln3B.8-ln3C.4+ln3D.8+ln3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x>-1,y>0,且x+y=1,則$\frac{1}{x+1}$+$\frac{4}{y}$的最小值為( 。
A.3B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.化簡(jiǎn)求值:
(1)cos40°(1+$\sqrt{3}$tan10°);
(2)cos$\frac{2π}{7}$cos$\frac{4π}{7}$cos$\frac{6π}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某校高一(1)班共有40人,學(xué)號(hào)依次為1,2,3,…,40,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為5的樣本,若學(xué)號(hào)為2,10,18,34的同學(xué)在樣本中,則還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為( 。
A.27B.26C.25D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若sin(π-α)=$\frac{3\sqrt{10}}{10}$,且α是銳角,則tan2α=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.實(shí)數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x+y的最小值為( 。
A.-5B.-3C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=sin(2x+θ),其中0<θ<2π,若x=$\frac{π}{6}$是函數(shù)的一條對(duì)稱(chēng)軸,且f($\frac{π}{2}$)>f(π),則θ等于( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{11π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在矩形ABCD中,邊AB、AD的長(zhǎng)分別為2,1,若M,N分別是邊BC、CD上的點(diǎn),且滿足$\frac{|\overrightarrow{BM}|}{|\overrightarrow{BC}|}$=$\frac{|\overrightarrow{DN}|}{|\overrightarrow{DC}|}$=λ.
(1)當(dāng)λ=$\frac{1}{2}$時(shí),求向量$\overrightarrow{AM}$和$\overrightarrow{AN}$夾角的余弦值;
(2)求$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案