精英家教網 > 高中數學 > 題目詳情
如圖平面SAC⊥平面ACB,△SAC是邊長為4的等邊三角形,△ACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值.

【答案】分析:過S點作SD⊥AC于D,過D作DM⊥AB于M,連接SM,則∠DMS為二面角S-AB-C的平面角,求出DM,SM,即可得出結論.
解答:解:過S點作SD⊥AC于D,過D作DM⊥AB于M,連接SM,則
∵平面SAC⊥平面ACB
∴SD⊥平面ACB
∴SM⊥AB
又∵DM⊥AB
∴∠DMS為二面角S-AB-C的平面角
在△SAC中SD=4×
在△ACB中過C作CH⊥AB于H
∵AC=4,BC=
∴AB=
∵S=AB•CH=AC•BC
∴CH=
∵DM∥CH且AD=DC
∴DM=CH=
∵SD⊥平面ACB,DM?平面ACB
∴SD⊥DM
在RT△SDM中,SM===,
∴cos∠DNS==
點評:本題考查面面角,考查學生分析解決問題的能力,正確作出面面角是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖平面SAC⊥平面ACB,△SAC是邊長為4的等邊三角形,△ACB為直角三角形,∠ACB=90°,BC=4
2
,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中數學 來源:2015屆江蘇省高一下學期期末考試數學試卷(解析版) 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

 

查看答案和解析>>

科目:高中數學 來源:2015屆江蘇省江都市高一下學期期末考試數學試卷(解析版) 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

 

查看答案和解析>>

同步練習冊答案