【題目】中,的角平分線所在直線為,邊的高線所在直線為,邊的高線所在直線為,

1)求直線的方程;

2)求直線的方程;

3)求直線的方程.

【答案】1)直線的方程:;(2)直線的方程:;(3)直線的方程:

【解析】

1)先求出點(diǎn)的坐標(biāo)以及的斜率,再利用點(diǎn)斜式求出直線的方程.

2)設(shè),根據(jù)點(diǎn)關(guān)于的角平分線所在直線的對(duì)稱點(diǎn)在直線 上,求出的值,用兩點(diǎn)式可得直線的方程.

3)求出直線的斜率,用點(diǎn)斜式求出直線的方程.

1)由,求得,即,

根據(jù)邊上的高所在直線為,

的斜率為

所以直線的方程為,即.

2)根據(jù)邊上的高所在直線為,

設(shè),

則點(diǎn)關(guān)于的角平分線所在直線的對(duì)稱點(diǎn)

,在直線.

,求得,

所以

再由兩點(diǎn)式求得的方程,即.

3)因?yàn)?/span>邊的高所在直線為,

故直線的斜率為,

所以方程為,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

1)求的取值范圍,并求出圓心坐標(biāo);

2)有一動(dòng)圓的半徑為,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的上焦點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線截得的弦長(zhǎng)為.

(1)求橢圓的方程;

(2)過橢圓左頂點(diǎn)做兩條互相垂直的直線,且分別交橢圓于兩點(diǎn)(,不是橢圓的頂點(diǎn)),探究直線是否過定點(diǎn),若過定點(diǎn)則求出定點(diǎn)坐標(biāo),否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對(duì)于,都有,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不重合的兩條直線和不重合的兩個(gè)平面,,下面的幾個(gè)命題:,且,則,與平面成等角,則,,且,則;,,則;,異面,且,均與平面平行,則.在這5個(gè)命題中,真命題的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了冰雪答題王冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

3)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為優(yōu)秀,比賽成績(jī)低于80分為非優(yōu)秀.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

40

女生

50

合計(jì)

100

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S-ABCD中,底面ABCD,四邊形ABCD是邊長(zhǎng)為1的正方形,且,點(diǎn)MSD的中點(diǎn).請(qǐng)用空間向量的知識(shí)解答下列問題:

1)求證:

2)求平面SAB與平面SCD夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,的中點(diǎn).

(I)若上的一點(diǎn),且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國2019年新年賀歲大片《流浪地球》自上映以來引發(fā)了社會(huì)的廣泛關(guān)注,受到了觀眾的普遍好評(píng).假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為,女性觀眾認(rèn)為《流浪地球》好看的概率為.某機(jī)構(gòu)就《流浪地球》是否好看的問題隨機(jī)采訪了4名觀眾(其中2男2女).

(1)求這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;

(2)設(shè)表示這4名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案