【題目】已知數(shù)集其中,,2,,n,,若對任意的2,,都存在,,使得下列三組向量中恰有一組共線:
向量與向量;
向量與向量;
向量與向量,則稱X具有性質(zhì)P,例如2,具有性質(zhì)P.
若3,具有性質(zhì)P,則x的取值為______
若數(shù)集3,,具有性質(zhì)P,則的最大值與最小值之積為______.
【答案】,,9; .
【解析】
(1)直接根據(jù)性質(zhì)的定義,利用向量共線的坐標(biāo)表示列方程求解即可;(2)由(1)可得,,9,當(dāng)時,具有性質(zhì)的,,,,9,27;時,具有性質(zhì)的,,,,,9;當(dāng)時,具有性質(zhì)的,,,,,27,81,綜合三種情況可得結(jié)果.
由題意可得:與;與;與中恰有一組共線,
當(dāng)與共線時,可得,此時另外兩組不共線,符合題意,
當(dāng)與共線時,可得,此時另外兩組不共線,符合題意,
當(dāng)與共線時,可得,此時另外兩組不共線,符合題意,
故x的取值為:,,9;
由的求解方法可得,,9,
當(dāng)時,由數(shù)集3,,具有性質(zhì)P,
若與;與;與中恰有一組共線,可得,;
若與;與;與中恰有一組共線,可得,;
若與;與;與中恰有一組共線,可得,27;
故3,,具有性質(zhì)P可得,,,,9,27;
同理當(dāng)時,3,,具有性質(zhì)P可得,,,,,9;
同理當(dāng)時,可得,,,,,27,81;
則的最大值為90,最小值為,
故的最大值與最小值之積為.
故答案為:,,9;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究鐘表與三角函數(shù)的關(guān)系,以9點與3點所在直線為x軸,以6點與12點為y軸,設(shè)秒針針尖指向位置P(x,y),若初始位置為P0( , ),秒針從P0(注此時t=0)開始沿順時針方向走動,則點P的縱坐標(biāo)y與時間t(秒)的函數(shù)關(guān)系為( )
A.y=sin( t+ )
B.y=sin( t﹣ )
C.y=sin(﹣ t+ )
D.y=sin(﹣ t﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設(shè)曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點為;觀光帶的后一部分為線段.
(1)求函數(shù)為曲線段的函數(shù)的解析式;
(2)若計劃在河流和觀光帶之間新建一個如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點在線段上.當(dāng)長為多少時,綠化帶的總長度最長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性;
(3)若對任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】BD是等腰直角三角形△ABC腰AC上的中線,AM⊥BD于點M,延長AM交BC于點N,AF⊥BC于點F,AF與BD交于點E.
(1)求證;△ABE≌△ACN;
(2)求證:∠ADB=∠CDN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|x|﹣2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)﹣|3t﹣2|≥0成立,求參數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m是實數(shù),,若函數(shù)為奇函數(shù).
求m的值;
用定義證明函數(shù)在R上單調(diào)遞增;
若不等式對任意恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: + =1(a>0,b>0)的離心率為 ,其右焦點到直線2ax+by﹣ =0的距離為 .
(1)求橢圓C1的方程;
(2)過點P(0,﹣ )的直線l交橢圓C1于A,B兩點.
①證明:線段AB的中點G恒在橢圓C2: + =1的內(nèi)部;
②判斷以AB為直徑的圓是否恒過定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com