10.集合M={x|-2≤x≤5}.
(1)若M⊆N,N={x|m-6≤x≤2m-1},求m的取值范圍;
(2)若N⊆M,N={x|m+1≤x≤2m-1},求m的取值范圍.

分析 (1)由題意可得m-6≤-2≤5≤2m-1,解之可得范圍;
(2)由題意可得N為空集或非空,可得-2≤m+1≤2m-1≤5或m+1>2m-1,解之可得范圍

解答 解:(1)若M⊆N,N={x|m-6≤x≤2m-1},
則m-6≤-2≤5≤2m-1,
解得2≤m≤4;
(2)若N⊆M,N={x|m+1≤x≤2m-1},
則-2≤m+1≤2m-1≤5或m+1>2m-1,
解得2≤m≤3或m<2,
即為m≤3.

點(diǎn)評(píng) 本題考查集合與集合的關(guān)系,考查不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)全集U=R,集合A={x|x<0},B={x||x|>1},則A∩(∁UB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知f(x)=x2-2x+3,則g(x)=f(2-x2)的單調(diào)增區(qū)間是( 。
A.[-1,0]及[1,+∞)B.[-$\sqrt{3}$,0]及[$\sqrt{3}$,+∞)C.(-∞,-1]及[0,1]D.(-∞,-$\sqrt{3}$]及[0,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(1)若a=1時(shí)函數(shù)f(x)有三個(gè)互不相同的零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若對(duì)任意的a∈[3,6],不等式f(x)≤1在[-2,2]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.由曲線(xiàn)y=2$\sqrt{x}$,直線(xiàn)y=x-3及x軸所圍成的圖形的面積為(  )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列命題中,真命題的是( 。
A.1弧度是一度的圓心角所對(duì)的弧
B.1弧度是長(zhǎng)度為半徑的弧
C.1弧度是一度的弧與一度的角之和
D.1弧度是長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=$\frac{1}{2}$x2-9lnx在[a-1,a+1]上存在極值點(diǎn),則a的取值范圍是(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)y=f(lg(x+1))的定義域?yàn)椋?,99],則函數(shù)y=f[log2(x+2)]的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,2]B.(-1,3)C.(-2,1]D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2+sinx+ex•cosx
(1)求該函數(shù)的導(dǎo)數(shù)f′(x)
(2)求函數(shù)f(x)在x=0處的切線(xiàn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案