【題目】在平面直角坐標系中,過點的直線與拋物線相交于點、兩點,設(shè),.
(1)求證:為定值;
(2)是否存在平行于軸的定直線被以為直徑的圓截得的弦長為定值?如果存在,求出該直線方程和弦長,如果不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)點F1(-c,0)、F2(c,0)分別是橢圓C:的左、右焦點,P為橢圓C上任意一點,且最小值為0.
⑴求橢圓C的方程;
⑵若動直線l1,l2均與橢圓C相切,且l1∥l2,試探究在x軸上是否存在定點B,點B到l1,l2的距離之積恒為1?若存在,請求出B坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知五邊形由直角梯形與直角△構(gòu)成,如圖1所示,,,,且,將梯形沿著折起,形成如圖2所示的幾何體,且使平面平面.
(1)在線段上存在點,且,證明:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某志愿者到某山區(qū)小學(xué)支教,為了解留守兒童的幸福感,該志愿者對某班40名學(xué)生進行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).
(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷能否有的把握認為孩子的幸福感強與是否是留守兒童有關(guān)?
(Ⅱ)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學(xué)生中恰有一人幸福感強的概率.
參考公式: ; 附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2,sinB=2sinA.
(1)若C=,求a,b的值;
(2)若cosC=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為奇函數(shù),為常數(shù).
(Ⅰ)求實數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機抽樣的方式從該校的兩班中各抽5名學(xué)生進行視力檢測,檢測的數(shù)據(jù)如下:
班5名學(xué)生的視力檢測結(jié)果是: .
班5名學(xué)生的視力檢測結(jié)果是: .
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪個班的學(xué)生視力較好?并計算班的5名學(xué)生視力的方差;
(2)現(xiàn)從班上述5名學(xué)生中隨機選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點是直線上的一動點,過點作圓的切線,切點為.
(1)當切線的長度為時,求點的坐標;
(2) 若的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.
(3)求線段長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com