A. | [$\frac{5}{{3{e^2}}}$,$\frac{3}{2e}$) | B. | [-$\frac{3}{2e}$,$\frac{3}{2e}$) | C. | [$\frac{5}{{3{e^2}}}$,1) | D. | [$\frac{3}{2e}$,1) |
分析 設(shè)g(x)=ex(2x-1),y=ax-a,則存在兩個(gè)整數(shù)x1,x2,使得g(x)在直線y=ax-a的下方,由此利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.
解答 解:函數(shù)f(x)=ex(2x-1)-ax+a,
其中a<1,
設(shè)g(x)=ex(2x-1),y=ax-a,
∵存在兩個(gè)整數(shù)x1,x2,
使得f(x1),f(x2)都小于0,
∴存在兩個(gè)整數(shù)x1,x2,
使得g(x)在直線y=ax-a的下方,
∵g′(x)=ex(2x+1),
∴當(dāng)x<-$\frac{1}{2}$時(shí),g′(x)<0,
∴當(dāng)x=-$\frac{1}{2}$時(shí),[g(x)]min=g(-$\frac{1}{2}$)=-2${e}^{-\frac{1}{2}}$.
當(dāng)x=0時(shí),g(0)=-1,g(1)=e>0,
直線y=ax-a恒過(1,0),斜率為a,故-a>g(0)=-1,
且g(-1)=-3e-1<-a-a,解得a<$\frac{3}{2e}$.g(-2)≥-2a-a,解得a≥$\frac{5}{3{e}^{2}}$,
∴a的取值范圍是[$\frac{5}{3{e}^{2}}$,$\frac{3}{2e}$).
故選:A.
點(diǎn)評 本題考查導(dǎo)數(shù)和極值,涉及數(shù)形結(jié)合和轉(zhuǎn)化的思想,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)<eaf(0) | B. | eaf(a)<f(0) | C. | f(a)>eaf(0) | D. | eaf(a)>f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com