已知,試用表示的值

 

答案:
解析:

要使為偶函數(shù),必須使恒成立,

    ,且是奇函數(shù),

   

       即

   

     

      ,

           ①

      是一個(gè)任意的奇函數(shù),

   對(duì)其定義域中任意x的值,不能恒為零,

要使①式對(duì)定義域中任意x均成立,必須且只須綜上所述:當(dāng)且僅當(dāng)時(shí),對(duì)于任意奇函數(shù)均為偶函數(shù).

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線C2的公共點(diǎn),且△MF1F2的周長(zhǎng)為6,求橢圓C1的方程;
我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設(shè)過(guò)點(diǎn)F(1,0)的直線與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

已知,試用表示的值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,試用表示的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第四次月考理科數(shù)學(xué)試卷 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為離心率,點(diǎn)在且橢圓E上,

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

(Ⅲ)試用表示的面積,并求面積的最大值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案