橢圓mx2+y2=1的焦點在y軸上,長軸長是短軸長的3倍,則m=    .
9
橢圓標準方程為+y2=1,
由題意知3=1,
∴m=9.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過點P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點.過點Q作x軸的垂線,垂足為E.取點A(0,2),連接AE,過點A作AE的垂線交x軸于點D.點G是點D關(guān)于y軸的對稱點,作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標系xOy中,已知橢圓的左焦點為F,直線x-y-1=0,x-y+1=0與橢圓分別相交于點A,B,C,D,則AF+BF+CF+DF=     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的左、右焦點坐標分別是(-,0),(,0),離心率是.直線y=t與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P,圓心為P.
(1)求橢圓C的方程;
(2)若圓P與x軸相切,求圓心P的坐標;
(3)設(shè)Q(x,y)是圓P上的動點,當t變化時,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則(  )
A.a(chǎn)2=B.a(chǎn)2=13
C.b2=D.b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+=1上有兩個動點P、Q,E(3,0),EP⊥EQ,則·的最小值為(  )
A.6B.3-C.9D.12-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點分別為,點在橢圓上,如果線段的中點在軸上,那么               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=sin+cosg(x)=2sin2.
(1)若α是第一象限角,且f(α)=,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2是橢圓C:=1(a>b>0)的兩個焦點,P為橢圓C上一點,且.若△PF1F2的面積為9,則b=________.

查看答案和解析>>

同步練習(xí)冊答案