圖1-19
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
(2007
湖南,19)如圖所示,某地為了開(kāi)發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路.點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用.從點(diǎn)O到山腳修路的造價(jià)為a萬(wàn)元/km,原有公路改建費(fèi)用為萬(wàn)元/km.當(dāng)山坡上公路長(zhǎng)度為lkm(1≤l≤2)時(shí),其造價(jià)為萬(wàn)元.已知OA⊥AB,PB⊥AB,AB=1.5(km),.(1)
在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價(jià)最。(2)
對(duì)于(1)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價(jià)最;(3)
在AB上是否存在兩個(gè)不同的點(diǎn)、,使沿折線修建公路的總造價(jià)小于(2)中得到的最小總造價(jià),證明你的結(jié)論.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
圖2-4-19
(1)求∠ADF的度數(shù).
(2)若∠ACB的度數(shù)為y度,∠B的度數(shù)為x度,那么y與x之間有怎樣的關(guān)系?試寫(xiě)出你的猜測(cè)并給出證明.
(3)若AB =AC,求AC∶BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
圖2-5-19
(1)求證:AB2=PB·BD.
(2)若PA =15,PB =5,求BD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價(jià)最;
(2)對(duì)于(1)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價(jià)最小;
(3)在AB上是否存在兩個(gè)不同的點(diǎn)D′,E′,使沿折線.PD′E′O修建公路的總造價(jià)小于(2)中得到的最小總造價(jià)?證明你的結(jié)論.
a)
第19題圖
(文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.
(1)求AC1與BC所成角的余弦值;
(2)求二面角C1-BD-C的大;
(3)設(shè)M是BD上的點(diǎn),當(dāng)DM為何值時(shí),D1M⊥平面A1C1D?并證明你的結(jié)論.
第19題圖
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求證:AC⊥平面BB1C1C;
(2)當(dāng)α為何值時(shí),AB1⊥BC1,且使D點(diǎn)恰為BC的中點(diǎn)?并說(shuō)明理由;
(3)當(dāng)AB1⊥BC1,且D為BC中點(diǎn)時(shí),若BC=2,四棱錐A-BB1C1C的體積為,求二面角A-B1C1-C的大。
第19題圖
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com