設(shè)V是全體平面向量構(gòu)成的集合,若映射滿足:對任意向量以及任意∈R,均有

則稱映射f具有性質(zhì)P。

先給出如下映射:

其中,具有性質(zhì)P的映射的序號為________。(寫出所有具有性質(zhì)P的映射的序號)

 

【答案】

解析:①

具有性質(zhì)P的映射,同理可驗證③符合,②不符合,答案應(yīng)填①③.

 

解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)V是全體平面向量構(gòu)成的集合,若映射f:V→R滿足:對任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b)則稱映射f具有性質(zhì)P.先給出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號為
 
.(寫出所有具有性質(zhì)P的映射的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)V是全體平面向量構(gòu)成的集合.若映射f:V→R滿足:對任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b),則稱映射f具有性質(zhì)P.現(xiàn)給出如下映射:
①f1:V→R,f1(m)=x+y+1,m=(x,y)∈V;
②f2:V→R,f2(m)=x-y,m=(x,y)∈V;
③f3:V→R,f3(m)=x2+y,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號為
(2)
(2)
.(寫出所有具有性質(zhì)P的映射的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年普通高中招生考試福建省高考理科數(shù)學(xué) 題型:填空題

設(shè)V是全體平面向量構(gòu)成的集合,若映射滿足:對任意向量以及任意∈R,均有

則稱映射f具有性質(zhì)P。
先給出如下映射:

其中,具有性質(zhì)P的映射的序號為________。(寫出所有具有性質(zhì)P的映射的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建 題型:填空題

設(shè)V是全體平面向量構(gòu)成的集合,若映射f:V→R滿足:對任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b)則稱映射f具有性質(zhì)P.先給出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號為______.(寫出所有具有性質(zhì)P的映射的序號)

查看答案和解析>>

同步練習(xí)冊答案