已知圓C的圓心坐標(biāo)為(2,-1),半徑為1
(1)求圓C的方程;
(2)求經(jīng)過原點O且與圓C相切的直線方程;
(3)若直線經(jīng)過原點O且與圓C相切于點Q,求線段OQ的長.
分析:(1)根據(jù)圓的標(biāo)準(zhǔn)方程,可直接寫出圓方程的標(biāo)準(zhǔn)形式;
(2)由于直線l過原點且與圓相切,得到直線l的斜率存在,所以設(shè)出直線l的方程為y=kx,
然后利用點到直線的距離公式求出圓心到直線l的距離d,讓d等于圓的半徑列出關(guān)于k的方程,求出方程的解即可得到k的值,即得直線方程;
(3)由圓的標(biāo)準(zhǔn)方程知,OC=
5
,r=1,故可得到線段OQ的長.
解答:解:(1)∵圓C的圓心坐標(biāo)為(2,-1),半徑為1,
∴根據(jù)圓的標(biāo)準(zhǔn)方程,得所求圓的方程為(x-2)2+(y+1)2=(1)2
即(x-2)2+(y+1)2=1;
(2)由直線l過原點,當(dāng)直線l的斜率不存在時,不合題意,
則設(shè)直線l的方程為y=kx,
因為直線l與已知圓相切,所以圓心到直線的距離d=
|2k+1|
k2+1
=r=1
,
化簡得:3k2+4k=0,解得:k=0或k=-
4
3

則直線l的方程為:y=0或y=-
4
3
x;
(3))∵圓C的圓心坐標(biāo)為(2,-1),半徑為1,
∴OC=
22+(-1)2
=
5
,r=1,
又由OQ2=OC2-r2
故OQ=2.
點評:此題考查學(xué)生掌握直線與圓相切時所滿足的條件,靈活運用點到直線的距離公式化簡求值,考查了數(shù)形結(jié)合的數(shù)學(xué)思想,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣M=
0
1
1
0
,N=
0
1
-1
0
.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對應(yīng)的變換作用下得到的曲線F,求曲線F的方程.
(2)在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為C (2,
π
3
),半徑R=
5
,求圓C的極坐標(biāo)方程.
(3)已知a,b為正數(shù),求證:
1
a
+
4
b
9
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心坐標(biāo)為(2,-3),一條直徑的兩個端點分別在x軸和y軸上,則圓C的標(biāo)準(zhǔn)方程為
(x-2)2+(y+3)2=13
(x-2)2+(y+3)2=13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓C的圓心坐標(biāo)為(1,-1),且過點M(2,-1).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點N(-1,-2)且斜率為1的直線l與圓C相交于A、B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心坐標(biāo)為C(2,-1),且被直線x-y-1=0所截得弦長是2
2
,
(1)求圓的方程;
(2)已知A為直線l:x-y+1=0上一動點,過點A的直線與圓相切于點B,求切線段|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為C(2,
π
3
),半徑R=
5
,求圓C的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案