【題目】某企業(yè)質(zhì)量檢驗(yàn)員為了檢測(cè)生產(chǎn)線上零件的情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測(cè)量,根據(jù)所測(cè)量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);

2)已知尺寸在上的零件為一等品,否則為二等品. 將這個(gè)零件尺寸的樣本頻率視為概率,從生產(chǎn)線上隨機(jī)抽取個(gè)零件,試估計(jì)所抽取的零件是二等品的概率.

【答案】163.4720.2

【解析】

1)由頻率分布直方圖中中位數(shù)兩邊頻率相等,即可求出中位數(shù)的大;

2)計(jì)算尺寸在外的頻率,用頻率估計(jì)概率,即可得出結(jié)論.

1)由頻率分布直方圖的性質(zhì)得:

,

所以中位數(shù)在內(nèi),設(shè)為,

,

解得

所以估計(jì)中位數(shù)為63.47;

2)尺寸在上的頻率為,

所以從生產(chǎn)線上隨機(jī)抽取1個(gè)零件,估計(jì)所抽取的零件是二等品的概率為0.2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的極小值為1,求實(shí)數(shù)m的值;

2)若函數(shù)時(shí),其圖象全部都在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護(hù)是一項(xiàng)具體有效措施.某市為有效防護(hù)疫情,宣傳居民盡可能不外出,鼓勵(lì)居民的生活必需品可在網(wǎng)上下單,商品由快遞業(yè)務(wù)公司統(tǒng)一配送(配送費(fèi)由政府補(bǔ)貼).快遞業(yè)務(wù)主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對(duì)“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒(méi)有提成,超過(guò)83件部分每件提成5元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機(jī)抽取一名快遞員并調(diào)取其100天的送件數(shù),得到如下條形圖:

1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;

2)若將頻率視為概率,回答下列問(wèn)題:

①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學(xué)期望;

②小王想到這兩家公司中的一家應(yīng)聘“快遞員”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)過(guò)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

(1)當(dāng)時(shí),求函數(shù)圖象在處的切線方程;

(2)若對(duì)任意,不等式恒成立,求的取值范圍;

(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】英國(guó)統(tǒng)計(jì)學(xué)家EH.辛普森1951年提出了著名的辛普森悖論,下面這個(gè)案例可以讓我們感受到這個(gè)悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):

法官甲

法官乙

終審結(jié)果

民事庭

行政庭

合計(jì)

終審結(jié)果

民事庭

行政庭

合計(jì)

維持

29

100

129

維持

90

20

110

推翻

3

18

21

推翻

10

5

15

合計(jì)

32

118

150

合計(jì)

100

25

125

記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,則下面說(shuō)法正確的是

A. ,B. ,,

C. ,,D. ,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱(chēng)為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一.為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村脫貧,堅(jiān)持扶貧同扶智相結(jié)合,此幫扶單位考察了甲、乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對(duì)兩種生產(chǎn)方式的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間的為優(yōu)等品;指標(biāo)在區(qū)間的為合格品,現(xiàn)分別從甲、乙兩種不同加工方式生產(chǎn)的農(nóng)產(chǎn)品中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測(cè),測(cè)試指標(biāo)結(jié)果的頻數(shù)分布表如下:

甲種生產(chǎn)方式:

指標(biāo)區(qū)間

頻數(shù)

5

15

20

30

15

15

乙種生產(chǎn)方式:

指標(biāo)區(qū)間

頻數(shù)

5

15

20

30

20

10

(1)在用甲種方式生產(chǎn)的產(chǎn)品中,按合格品與優(yōu)等品用分層抽樣方式,隨機(jī)抽出5件產(chǎn)品,①求這5件產(chǎn)品中,優(yōu)等品和合格品各多少件;②再?gòu)倪@5件產(chǎn)品中,隨機(jī)抽出2件,求這2件中恰有1件是優(yōu)等品的概率;

(2)所加工生產(chǎn)的農(nóng)產(chǎn)品,若是優(yōu)等品每件可售55元,若是合格品每件可售25元.甲種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為15元,乙種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為20元.用樣本估計(jì)總體比較在甲、乙兩種不同生產(chǎn)方式下,該扶貧單位要選擇哪種生產(chǎn)方式來(lái)幫助該扶貧村來(lái)脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于AB兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案