13.已知一組數(shù)據(jù)a、b、9、10、11的平均數(shù)為10,方差為2,則|a-b|=(  )
A.2B.4C.8D.12

分析 根據(jù)題意,可得a+b=20,①以及(a-10)2+(b-10)2=8,②;解可得a、b的值,計算可得|a-b|的值,即可得答案.

解答 解:一組數(shù)據(jù)a、b、9、10、11的平均數(shù)為10,方差為2,
則有a+b+9+10+11=50,即a+b=20,①
$\frac{1}{5}$[(a-10)2+(b-10)2+(9-10)2+(10-10)2+(11-10)2]=2,
即(a-10)2+(b-10)2=8,②
聯(lián)立①、②可得:$\left\{\begin{array}{l}{a=12}\\{b=8}\end{array}\right.$或$\left\{\begin{array}{l}{a=8}\\{b=12}\end{array}\right.$,
則|a-b|=4;
故選:B.

點評 本題考查數(shù)據(jù)方差、平均數(shù)的計算,關(guān)鍵是求出a、b的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,求證:;

(2)若,,求的最大值;

(3)求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)={e^x}-{e^{-x}}+ln(x+\sqrt{{x^2}+1})$(其中e≈2.718),若對任意的x∈[-1,2],f(x2+2)+f(-2ax)≥0恒成立,則實數(shù)a的取值范圍是-$\frac{3}{2}$≤a≤$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將函數(shù)f(x)=sinωx(ω是正整數(shù))的圖象向右平移$\frac{π}{6}$個單位,所得曲線在區(qū)間$(\frac{4π}{3},\frac{3π}{2})$內(nèi)單調(diào)遞增,則ω的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某公司為感謝全體員工的辛勤勞動,決定在年終答謝會上,通過摸球方式對全公司1000位員工進行現(xiàn)金抽獎.規(guī)定:每位員工從裝有4個相同質(zhì)地球的袋子中一次性隨機摸出2個球,這4個球上分別標(biāo)有數(shù)字a、b、c、d,摸出來的兩個球上的數(shù)字之和為該員工所獲的獎勵額X(單位:元).公司擬定了以下三個數(shù)字方案:
方案abcd
100100100500
100100500500
200200400400
(Ⅰ)如果采取方案一,求X=200的概率;
(Ⅱ)分別計算方案二、方案三的平均數(shù)$\overline{X}$和方差s2,如果要求員工所獲的獎勵額相對均衡,方案二和方案三選擇哪個更好?
(Ⅲ)在投票選擇方案二還是方案三時,公司按性別分層抽取100名員工進行統(tǒng)計,得到如下不完整的2×2列聯(lián)表.請將該表補充完整,并判斷能否有90%的把握認(rèn)為“選擇方案二或方案三與性別有關(guān)”?
方案二方案三合計
男性1248                   60           
女性6        3440
合計1882100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.05
k02.0722.7063.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.偶函數(shù)f(x)在(0,+∞)單調(diào)遞減,f(1)=0,不等式f(x)>0的解集為(-1,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={y|y=lgx},B={x|y=$\sqrt{x}$},則集合A∩B=( 。
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某企業(yè)有甲、乙兩個研發(fā)小組,他們研究新產(chǎn)品成功的概率分別為$\frac{3}{4}$和$\frac{3}{5}$,現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨立.
(1)求恰好有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲得利潤120萬元,不成功則會虧損50萬元;若新產(chǎn)品B研發(fā)成功,企業(yè)可獲得利潤100萬元,不成功則會虧損40萬元,求該企業(yè)獲利ξ萬元的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知m>0,n>0,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是[2+2$\sqrt{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案