已知橢圓經(jīng)過點,且兩焦點與短軸的兩個端點的連線構(gòu)成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點,若線段的垂直平分線經(jīng)過點,求
為原點)面積的最大值.

(1);(2) 面積的最大值為.

解析試題分析:(1)兩焦點與短軸的兩個端點的連線構(gòu)成一正方形,可知,又在橢圓上,可得的值;(2)可得直線直線有斜率,當(dāng)直線的斜率為時,則的垂直平分線為軸,,當(dāng)直線的斜率不為時,則設(shè)的方程為,與橢圓方程聯(lián)立可得,方程有兩個不同的解又,
由弦長公式求出,又原點到直線的距離為,那么,可得時,取得最大值.
試題解析:(1)∵橢圓的兩焦點與短軸的兩個端點的連線構(gòu)成正方形,
,∴,             2分
又∵橢圓經(jīng)過點,代入可得,
∴故所求橢圓方程為                 4分
(2)設(shè)因為的垂直平分線通過點,顯然直線有斜率,
當(dāng)直線的斜率為時,則的垂直平分線為軸,此時
所以,因為,所以

所以,當(dāng)且僅當(dāng)時,取得最大值為,     6分
當(dāng)直線的斜率不為時,則設(shè)的方程為
所以,代入得到         
當(dāng),   即                          
方程有兩個不同的解又,         
所以,又,化簡得到    -----8分
代入,得到               
又原點到直線的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線y=kx+b與曲線交于A、B兩點,記△AOB的面積為S(O是坐標(biāo)原點).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù),).
(1)寫出直線的直角坐標(biāo)方程;
(2)求直線與曲線的交點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的對稱中心在坐標(biāo)原點,一個頂點為,右焦點F與點 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點M,N滿足,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點C(1,0),點A、B是⊙O:x2+y2=9上任意兩個不同的點,且滿足·=0,設(shè)P為弦AB的中點.

(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線.命題p: 直線l1:與拋物線C有公共點.命題q: 直線l2:被拋物線C所截得的線段長大于2.若為假, 為真,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

無論為任何實數(shù),直線與雙曲線恒有公共點.
(1)求雙曲線的離心率的取值范圍;
(2)若直線過雙曲線的右焦點,與雙曲線交于兩點,并且滿足,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知P是圓上任意一點,點N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點Q,當(dāng)點P在圓M上運動時,點Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)時,在x軸上是否存在一定點E,使得對曲線C的任意一條過E的弦AB,為定值?若存在,求出定點和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線的焦點為F,在第一象限中過拋物線上任意一點P的切線為,過P點作平行于軸的直線,過焦點F作平行于的直線交,若,則點P的坐標(biāo)為         .

查看答案和解析>>

同步練習(xí)冊答案