數(shù)列的通項,其前n項和為.
(1)求;
(2)求數(shù)列{}的前n項和.
(1);(2)
解析試題分析:(1)化簡通項公式為,考慮到的值是周期性出現(xiàn)的,而且周期是3,故將數(shù)列三項并為一組為+++……+分別求和,進而求;(2)求,觀察其特征選擇相應(yīng)的求和方法,通常求數(shù)列前n項和的方法有①裂項相消法,在求和過程中相互抵消的辦法;②錯位相減法,通項公式是等差數(shù)列乘以等比數(shù)列的形式;③分組求和法,將數(shù)列求和問題轉(zhuǎn)化為等差數(shù)列求和或者等比數(shù)列求和問題;④奇偶并項求和法,考慮數(shù)列相鄰兩項或者相鄰幾項的特征,進而求和的方法,該題利用錯位相減法求和.
試題解析:(1) 由于,
,∴;
(2)
兩式相減得:
考點:1、三角函數(shù)的周期性;2、數(shù)列求和;3、余弦的二倍角公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,又a1=1,a2=2,且滿足Sn+1=kSn+1,
(1)求k的值及{an}的通項公式;(2)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正項數(shù)列{an}的前n項和Sn滿足:-(n2+n-1)Sn-(n2+n)=0.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項,公差,且分別是正數(shù)等比數(shù)列的項.
(1)求數(shù)列與的通項公式;
(2)設(shè)數(shù)列對任意均有成立,設(shè)的前項和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是單調(diào)遞增的等差數(shù)列,首項,前項和為;數(shù)列是等比數(shù)列,首項
(1)求的通項公式;
(2)令求的前20項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項均為正數(shù),其前項和為,且.
⑴求證:數(shù)列是等差數(shù)列;
⑵設(shè),求證:;
⑶設(shè),,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{an}中,a1=1,當n≥2時,其前n項和Sn滿足.
(1)求Sn的表達式;
(2)設(shè)bn=,求{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com