【題目】已知各項都不為零的無窮數(shù)列滿足:

(1)證明為等差數(shù)列,并求時數(shù)列中的最大項:

(2)若為數(shù)列中的最小項,求的取值范圍.

【答案】(1)證明見解析,最大項為.

(2) .

【解析】

(1)推導(dǎo)出是等差數(shù)列,且公差,由此能證明數(shù)列遞減數(shù)列,最大項為;(2)由,當(dāng)時,數(shù)列是正項遞增數(shù)列,此數(shù)列沒有最大項,從而數(shù)列{an}中就沒有最小項,故;再由數(shù)列是遞增數(shù)列,且的最小項,能求出的取值范圍.

(1)由

是等差數(shù)列,且公差:

當(dāng)時,

數(shù)列遞減數(shù)列,最大項為

(2)由(1)知;

當(dāng)時,數(shù)列是正項遞增數(shù)列,此數(shù)列沒有最大項,

從而數(shù)列中就沒有最小項,故

由數(shù)列是遞增數(shù)列,且的最小項,

是數(shù)列中的最大負(fù)項,

從而有

.

的取值范圍是:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東北三省四市教研聯(lián)合體2018屆高三第二次模擬考試中國有個名句運籌帷幄之中,決勝千里之外.”其中的取意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進(jìn)行計算.算籌是將幾寸長的小竹棍擺在下面上進(jìn)行運算.算籌的擺放形式有縱橫兩種形式(如下圖所示).表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列.但各位數(shù)碼的籌式要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位數(shù)用橫式表示.依此類推.例如3266用算籌表示就是,8771用算籌可表示為

中國古代的算籌數(shù)碼

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)求過點和函數(shù)的圖像相切的直線方程

(2)若對任意,恒成立,的取值范圍

(3)若存在唯一的整數(shù),使得,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=AA1=1, AB1A1B相交于點D,MB1C1的中點 .

1)求證:CD⊥平面BDM

2)求平面B1BD與平面CBD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的是(

A.已知函數(shù)的定義域為,且在任何區(qū)間內(nèi)的平均變化率均比在同一區(qū)間內(nèi)的平均變化率小,則函數(shù)上是減函數(shù);

B.已知總體的各個個體的值由小到大依次為2,3,3,7,10,11,12,,18,20,且總體的平均數(shù)為10,則這組數(shù)的75%分位數(shù)為13;

C.方程的解集為;

D.一次函數(shù)一定存在反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三的某次數(shù)學(xué)測試中,對其中100名學(xué)生的成績進(jìn)行分析,按成績分組,得到的頻率分布表如下:

組號

分組

頻數(shù)

頻率

1

[90,100

15

2

[100,110

0.35

3

[110,120

20

0.20

4

[120,130

20

0.20

5

[130140

10

0.10

合計

100

1.00

1)求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù);

2)為了選拔出最優(yōu)秀的學(xué)生參加即將舉行的數(shù)學(xué)競賽,學(xué)校決定在成績較高的第34、5組中分層抽樣取5名學(xué)生,則第4、5組每組各抽取多少名學(xué)生?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,

,點在線段上,且, , 平面.

1)求證:平面平面;

2)當(dāng)四棱錐的體積最大時,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;如圖,四邊形,,,的內(nèi)角的對邊,

且滿足.

)證明:;

)若,設(shè),,

,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個平行班,每班50人,某教師采用、兩種不同的教學(xué)模式分別在甲、乙兩個班進(jìn)行教改實驗,為了了解教學(xué)效果,期末考試后,該教師分別從兩班中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出莖葉圖如圖所示,記成績不低于90分為“成績優(yōu)秀”.

(1)在乙班的20個個體中,從不低于86分的成績中隨機抽取2人,求抽出的兩個人均“成績優(yōu)秀”的概率;

(2)由以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表;能否在犯錯誤的概率不超過0.10的前提下認(rèn)為成績優(yōu)秀與教學(xué)模型有關(guān).

甲班(

乙班(

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.847

5.024

查看答案和解析>>

同步練習(xí)冊答案