設(shè)函數(shù)y=f(x)在R上有意義,對(duì)于給定的正數(shù)K,定義fk(x)=
f(x),f(x)≥k
k,f(x)<k
,取函數(shù)f(x)=2+x+e-x,如對(duì)任意的x∈R恒有fk(X)=f(x).則K的最大值為
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:由已知條件可得k≤f(x)min,用導(dǎo)數(shù)確定函數(shù)函數(shù)的單調(diào)性,求解函數(shù)的最值,進(jìn)而求出k的范圍,進(jìn)一步得出所要的結(jié)果.
解答: 解:由題意可得出k≤f(x)min
由于f′(x)=1-e-x,令f′(x)=0,e-x=1=e0解出x=0,
當(dāng)x>0時(shí),f′(x)>0,f(x)單調(diào)遞增,
當(dāng)x<0時(shí),f′(x)<0,f(x)單調(diào)遞減.
故當(dāng)x=0時(shí),f(x)取到最小值f(0)=2+1=3.
故當(dāng)k≤3時(shí),恒有fk(x)=f(x)
因此k的最大值為3.
故答案為3.
點(diǎn)評(píng):本題考查學(xué)生對(duì)新定義型問題的理解和掌握程度,理解好新定義的分段函數(shù)是解決本題的關(guān)鍵,將所求解的問題轉(zhuǎn)化為求解函數(shù)的最值問題,利用了導(dǎo)數(shù)的工具作用,體現(xiàn)了恒成立問題的解題思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,2),
b
=(2,1),若向量λ
a
+
b
與向量
c
=(-3,3)垂直,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2).

(Ⅰ)求f(x)的解析式及x0的值;
(Ⅱ)求f(x)在[-π,π]上的單調(diào)區(qū)間;
(Ⅲ)若f(x)=
8
5
,x∈(0,
π
3
),求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了對(duì)學(xué)生的語文、英語的綜合閱讀能力進(jìn)行分析,在全體學(xué)生中隨機(jī)抽出5位學(xué)生的成績作為樣本,這5位學(xué)生的語文、英語的閱讀能力等級(jí)得分(6分制)如下表:
x(語文閱讀能力)23456
y(英語閱讀能力)1.534.556
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
?
y
=bx+a

(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)語文閱讀能力為3.5的學(xué)生的英語閱讀能力等級(jí).
(注:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
, 
?
a
=
.
y
-
?
b
 
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

歐洲很多國家及美國已經(jīng)要求禁止在校園出售軟飲料,禁止向中小學(xué)生銷售可口可樂等高熱量碳酸飲料,原因是這些飲料被認(rèn)為是造成兒童 肥胖問題日益嚴(yán)重的主要原因之一.為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名六年級(jí)學(xué)生進(jìn)行了問卷調(diào)查得到列聯(lián)表:平均每天喝500mL以上為常喝,體重超過50kg為肥胖.
常喝不常喝合計(jì)
肥胖2
不肥胖18
合計(jì)30
已知在全部30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為
4
15

(1)請(qǐng)將列聯(lián)表補(bǔ)充完整
(2)是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由
(3)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
參考數(shù)據(jù):
P(K2≥K)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程是ρ-2cosθ-4sinθ=0,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程是
x=
1
2
t
y=2+
3
2
t
(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線l的參數(shù)方程化為普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),與y軸交于點(diǎn)E,求|EA|+|EB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=8x-2-x+2的一個(gè)零點(diǎn)所在區(qū)間為( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
lg|x|
x2
的大致圖象為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其生物成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100],頻率分布直方圖如圖.觀察圖形的信息,回答下列問題:
(1)求出生物成績低于50分的學(xué)生人數(shù);
(2)估計(jì)這次考試的眾數(shù)m與中位數(shù)n (結(jié)果保留一位小數(shù))
(3)估計(jì)這次考試的及格率(60分及以上為及格).

查看答案和解析>>

同步練習(xí)冊(cè)答案