已知點
分別是雙曲線
的左、右焦點,過
且垂直于
軸的直線與雙曲線交于
兩點,若
是鈍角三角形,則該雙曲線離心率的取值范圍是
( )
試題分析:線段
是雙曲線的通徑,
,若
是鈍角三角形則
即
點評:求離心率關(guān)鍵是找到關(guān)于
的齊次方程或不等式,雙曲線中的通徑長
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
討論方程
(
)所表示的曲線類型.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的兩個焦點分別為
,離心率
。
(1)求橢圓方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為–
,求直線l傾斜角的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
,
是橢圓的兩個焦點,若滿足
的點M總在橢圓的內(nèi)部,則橢圓離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知曲線
所圍成的封閉圖形的面積為
,曲線
的內(nèi)切圓半徑為
.記
為以曲線
與坐標軸的交點為頂點的橢圓.
(1)求橢圓
的標準方程;
(2)設(shè)
是過橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點.
(i)若
(
為坐標原點),當點
在橢圓
上運動時,求點
的軌跡方程;
(ii)若
是
與橢圓
的交點,求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若實數(shù)a、b、c成等差數(shù)列,點P(–1, 0)在動直線l:ax+by+c=0上的射影為M,點N(0, 3),則線段MN長度的最小值是 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓
的一個焦點為
,點
在橢圓
上,點
滿足
(其中
為坐標原點), 過點
作一斜率為
的直線交橢圓于
、
兩點(其中
點在
軸上方,
點在
軸下方) .
(1)求橢圓
的方程;
(2)若
,求
的面積;
(3)設(shè)點
為點
關(guān)于
軸的對稱點,判斷
與
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,橢圓的中心在坐標原點,
為左焦點,當
時,其離心率為
,此類橢圓稱為“黃金橢圓”,類比“黃金橢圓”,可推出“黃金雙曲線”的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
求焦點為(-5,0)和(5,0),且一條漸近線為
的雙曲線的方程.
查看答案和解析>>