已知橢圓與雙曲線有公共的焦點(diǎn),的一條漸近線與以的長軸為直徑的圓相交于A,B兩點(diǎn),若恰好將線段AB三等分,則=                            
解:由題意,C2的焦點(diǎn)為(±  ,0),一條漸近線方程為y=2x,根據(jù)對稱性易AB為圓的直徑且AB=2a
∴C1的半焦距c=  ,于是得a2-b2=5  ①
設(shè)C1與y=2x在第一象限的交點(diǎn)的坐標(biāo)為(x,2x),代入C1的方程得:x2="a2b2" b2+4a2 ②,
由對稱性知直線y=2x被C1截得的弦長=2 x,
由題得:2 x="2a/" 3 ,所以x="a" /3     ③
由②③得a2=11b2 ④
由①④得a2=5.5,b2=0.5 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;
(2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(diǎn)(異于端點(diǎn)),試問:當(dāng)面積最大時,是否與有關(guān)?并證明你的結(jié)論.
(3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認(rèn)為有價值的相似橢圓之間的三種性質(zhì)(不需證明);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)重合,則此雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓上一點(diǎn)作圓的兩條切線,點(diǎn)為切點(diǎn).過的直線軸, 軸分別交于點(diǎn)兩點(diǎn), 則的面積的最小值為(  )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率。
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓上,,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓上一點(diǎn)P到它的一個焦點(diǎn)的距離等于4,那么點(diǎn)P到另一個焦點(diǎn)的距離等于_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

A為橢圓=1上任意一點(diǎn),B為圓(x-1)2+y2=1上任意一點(diǎn),則|AB|的最大值為________      最小值為 ________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為橢圓的兩個焦點(diǎn),以為圓心作圓,已知圓經(jīng)過橢圓的中心,且與橢圓相交于點(diǎn),若直線恰與圓相切,則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是橢圓上的一點(diǎn),是該橢圓的兩個焦點(diǎn),若的內(nèi)切圓的半徑為,則( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案