內(nèi)有一點(diǎn)為過點(diǎn)且傾斜角為的弦,

(1)當(dāng)=135時(shí),求;
(2)當(dāng)弦被點(diǎn)平分時(shí),求出直線的方程;
(3)設(shè)過點(diǎn)的弦的中點(diǎn)為,求點(diǎn)的坐標(biāo)所滿足的關(guān)系式.

(1)(2) (3)

解析試題分析:(1)要求弦長,可利用弦長公式,即將弦所在的直線方程,與圓的方程聯(lián)立,之后所得的二次方程中,利用求之.還可以利用圓中求之,其中是圓心到弦所在直線的距離,指弦長.但是不論采取哪種方法,都先得求出弦所在的直線方程.根據(jù)題意,點(diǎn)斜式可求出.
(2)當(dāng)弦平分時(shí),弦所在直線被直線垂直且平分.所以,可先求出直線斜率, 根據(jù)垂直可知直線斜率,又因?yàn)橹本過點(diǎn),根據(jù)點(diǎn)斜式可求出直線.
(3)因?yàn)檫^點(diǎn)的弦可分為三種情況,①無斜率,此時(shí),;②斜率為0,此時(shí)平行x軸, ;③直線有斜率,且不為0,此時(shí),根據(jù)斜率相乘等于-1可找到點(diǎn)軌跡,將①②代入③中驗(yàn)證即可.
試題解析:(1)當(dāng)時(shí),直線的斜率為-1,根據(jù)點(diǎn)斜式有,直線的方程,
所以圓心到直線的距離為,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c2/7/3rhve4.png" style="vertical-align:middle;" /> ,
所以根據(jù),解得
(2)當(dāng)弦平分時(shí),,,
又因?yàn)橹本過點(diǎn),所以根據(jù)點(diǎn)斜式有直線的方程為.
(3)設(shè)的中點(diǎn)為,則   ,即 
當(dāng)的斜率和的斜率都存在時(shí):有

當(dāng)斜率不存在時(shí)點(diǎn)滿足上式,
當(dāng)斜率不存在時(shí)點(diǎn)亦滿足上式,
所以點(diǎn)的軌跡為。
考點(diǎn):求圓中的弦長;點(diǎn)斜式求直線;討論直線斜率情況求點(diǎn)的軌跡.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)A(3,3),B(5,2)到直線l的距離相等,且直線l經(jīng)過兩直線l1:3x-y-1=0和l2:x+y-3=0的交點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點(diǎn)依次滿足。
(1)求點(diǎn)的軌跡;  
(2)過點(diǎn)作直線交以為焦點(diǎn)的橢圓于兩點(diǎn),線段的中點(diǎn)到軸的距離為,且直線與點(diǎn)的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設(shè)點(diǎn)的坐標(biāo)為,是否存在橢圓上的點(diǎn)及以為圓心的一個(gè)圓,使得該圓與直線都相切,如存在,求出點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線l1:2x+y-4=0,求l1關(guān)于直線l:3x+4y-1=0對(duì)稱的直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切.求:
(1)光線l和反射光線所在的直線方程;
(2)光線自A到切點(diǎn)所經(jīng)過的路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線l經(jīng)過點(diǎn)(3,2),且在兩坐標(biāo)軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平行四邊形的兩條邊所在直線的方程分別是, 且它的對(duì)角線的交點(diǎn)是M(3,3),求這個(gè)平行四邊形其它兩邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題


13.若,則方程表示不同的直線有__________條.

查看答案和解析>>

同步練習(xí)冊(cè)答案