2.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)z+$\frac{1}{z}$的虛部是$\frac{1}{2}$.

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)z+$\frac{1}{z}$=1+i+$\frac{1}{1+i}$=1+i+$\frac{1-i}{(1+i)(1-i)}$=1+i+$\frac{1}{2}$-$\frac{1}{2}$i=$\frac{3}{2}$+$\frac{1}{2}$i的虛部為$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知曲線$f(x)=\frac{{{{ln}^2}x+alnx+a}}{x}$在點(diǎn)(e,f(e))處的切線與直線2x+e2y=0平行,a∈R.
(1)求a的值;
(2)求證:$\frac{f(x)}{x}>\frac{a}{e^x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,矩形ABCD中,AB=4,AD=2,E在DC邊上,且DE=1,將△ADE沿AE折到△AD'E的位置,使得平面AD'E⊥平面ABCE.
(Ⅰ)求證:AE⊥BD';
(Ⅱ)求二面角D'-AB-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知f(x)為偶函數(shù),在[0,+∞)上f(x)=$\left\{\begin{array}{l}{a({x}^{3}-1),x∈[0,1]}\\{x+\frac{a}{x}-2,x∈(1,+∞)}\end{array}\right.$且為單調(diào)遞增函數(shù),則使得f(ax)>f(2x-1)成立的x的取值范圍是( 。
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.(-$\frac{1}{3}$,1)D.D、(-∞,$-\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|x>0},B={x|x2-2x-3<0},則A∩B=( 。
A.(-1,0)B.(0,3)C.(-∞,0)∪(3,+∞)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,點(diǎn)A(2,0),直線l垂直y軸,垂足為點(diǎn)B,線段AB的垂直平分線與l相交于點(diǎn)C,
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)若P為點(diǎn)C的軌跡上的一動(dòng)點(diǎn),Q為拋物線x2=y-4上的一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),求△OPQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若等差數(shù)列{an}的前n項(xiàng)和Sn滿足S4≤4,S6≥12,則a4的最小值為( 。
A.2B.$\frac{7}{2}$C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)=x+ln(x+1),那么f′(0)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.曲線C:$\left\{\begin{array}{l}{x=secθ}\\{y=tanθ}\end{array}\right.$(θ為參數(shù))的兩個(gè)頂點(diǎn)之間的距離為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案