已知f(x)=-2x3+6x2+m(m為常數(shù))在[-2,2]上有最小值3,那么此函數(shù)在[-2,2]上的最大值為( 。
分析:利用已知函數(shù)在[-2,2]上有最小值3,求出常數(shù)m的值,即可求出函數(shù)的最大值.
解答:解:由已知,f′(x)=-6x2+12x,由-6x2+12x≥0得0≤x≤2,
因此當x∈[0,2]時f(x)為增函數(shù),在x∈[2,+∞),(-∞,0]時f(x)為減函數(shù),
又因為x∈[-2,2],所以得當x∈[-2,0]時f(x)為減函數(shù),在x∈[0,2]時f(x)為增函數(shù),
所以f(x)min(0)=m=3,故有f(x)=-2x3+6x2+3
所以f(-2)=43,f(2)=11
因為f(-2)=-43<f(2)=11,所以函數(shù)f(x)的最大值為f(-2)=-43.
故選D.
點評:本題考查導數(shù)知識的運用,考查函數(shù)的最值,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義函數(shù)y=f(x),x∈D,若存在常數(shù)C,對任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=2x,x∈[1,2],則函數(shù)f(x)=2x在[1,2]上的幾何平均數(shù)為( 。
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2x可以表示成一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和,若關(guān)于x的不等式ag(x)+h(2x)≥0對于x∈[1,2]恒成立,則實數(shù)a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)選修4-5:不等式選講
已知f(x)=|2x-1|+ax-5(a是常數(shù),a∈R)
(Ⅰ)當a=1時求不等式f(x)≥0的解集.
(Ⅱ)如果函數(shù)y=f(x)恰有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2x+3,g(x)=4x-5,則使得f(h(x))=g(x)成立的h(x)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)已知f(x)=2x+x,則f-1(6)=
2
2

查看答案和解析>>

同步練習冊答案