已知直線l過點(diǎn)(0,),且斜率為,拋物線C:y2=2px(p大于0)的頂點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上.
(1)求拋物線C的方程;
(2)設(shè)A、B是拋物線C上兩個(gè)動(dòng)點(diǎn),過A作平行于x軸的直線m,直線OB與直線m交于點(diǎn)N,若(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.
【答案】分析:(1)先求得直線l的方程,進(jìn)而可得到原點(diǎn)垂直于l的直線方程,然后聯(lián)立兩方程求得其交點(diǎn)坐標(biāo),即可得到P的值,從而可確定拋物線的方程.
(2)先假設(shè)A,B,N的坐標(biāo),根據(jù)可得到關(guān)于A,B坐標(biāo)之間的關(guān)系,再由A,B兩點(diǎn)均在拋物線上得到y(tǒng)22=4x1,y22=4x2即可得到y(tǒng)1y2的值,再表示出直線ON,結(jié)合y22=4x1,y22=4x2和y1y2=-8可得到點(diǎn)N的軌跡.
解答:解:(1)由題意可得直線l:
過原點(diǎn)垂直于l的直線方程為y=-2x②
解①②得.∵拋物線的頂點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上.
,P=2∴拋物線C的方程為y2=4x.
(2)設(shè)A(x1,y1),B(x2,y2),N(x,y),由,得x1x2+y1y2+4=0.
又y12=4x1,y22=4x2.解得y1y2=-8③
直線ON:,即④由③、④及y=y1得,
點(diǎn)N的軌跡方程為x=-2(y≠0).
點(diǎn)評(píng):本題主要考查直線與拋物線的綜合題,直線與圓錐曲線的綜合題是高考的重點(diǎn)也是熱點(diǎn)問題,每年必考,平時(shí)要注意基礎(chǔ)知識(shí)的積累和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)(0,
5
4
),且斜率為
1
2
,拋物線C:y2=2px(p大于0)的頂點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上.
(1)求拋物線C的方程;
(2)設(shè)A、B是拋物線C上兩個(gè)動(dòng)點(diǎn),過A作平行于x軸的直線m,直線OB與直線m交于點(diǎn)N,若
OA
OB
+P2=0
(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)(0,2),且與拋物線y2=4x交于A(x1,y1)、B(x2,y2)兩點(diǎn),則
1
y1
+
1
y2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、已知直線l過點(diǎn)(0,7),且與直線y=-4x+2平行,則直線l的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG∥AB.
(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線L過點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)(0,-1),且與直線y=-x+2垂直,則直線l的方程為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案