【題目】某單位為了了解辦公樓用電量y(度)與氣溫x(℃)之間的關系,隨機統(tǒng)計了四個工作日的用電量與當天平均氣溫,并制作了對照表:

氣溫(℃)

17

14

11

﹣2

用電量(度)

23

35

39

63

由表中數(shù)據(jù)得到線性回歸方程 =﹣2x+a,當氣溫為﹣5℃時,預測用電量約為 ( )
A.38度
B.50度
C.70度
D.30度

【答案】C
【解析】解:由表中數(shù)據(jù)計算 = ×(17+14+11﹣2)=10,

= ×(23+35+39+63)=40,

代入線性回歸方程 =﹣2x+a中,

計算a= +2 =40+2×10=60,

∴回歸方程為 =﹣2x+60;

當x=﹣5時, =﹣2×(﹣5)+60=70,

即氣溫為﹣5℃時預測用電量約為70度.

所以答案是:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率 ,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線l與橢圓相交于不同的兩點A,B,已知點A的坐標為(﹣a,0),點Q(0,y0)在線段AB的垂直平分線上,且 ,求y0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有4個新畢業(yè)的老師要分配到四所學校任教,每個老師都有分配(結果用數(shù)字表示).
(1)共有多少種不同的分配方案?
(2)恰有一個學校不分配老師,有多少種不同的分配方案?
(3)某個學校分配了2個老師,有多少種不同的分配方案?
(4)恰有兩個學校不分配老師,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F是橢圓C: + =1的右焦點,P是C上一點,A(﹣2,1),當△APF周長最小時,其面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有兩個極值點x1 , x2 , 且x1<x2 , 記點M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直線MN的方程;
(Ⅱ)證明:線段MN與曲線y=f(x)有且只有一個異于M、N的公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)
(1)若f(x)是奇函數(shù),求m的值;
(2)當m=1時,求函數(shù)f(x)在(﹣∞,0)上的值域,并判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),請說明理由;
(3)若函數(shù)f(x)在[0,1]上是以3為上界的函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結論:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0.
其中正確結論的序號是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2(a﹣2)x﹣b2+13.
(1)先后兩次拋擲一枚質(zhì)地均勻的骰子(骰子六個面上分別標有數(shù)字1,2,3,4,5,6),骰子向上的數(shù)字一次記為a,b,求方程f(x)=0有兩個不等正根的概率;
(2)如果a∈[2,6],求函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)+ax2 , a>0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(﹣1,0)有唯一零點x0 , 證明:

查看答案和解析>>

同步練習冊答案