【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP中點,將△PAD沿AD折起,使得PD⊥面ABCD;

(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中點.求三棱錐A﹣PEB的體積.

【答案】(Ⅰ)證明:∵PD⊥底面ABCD,∴PD⊥AD.

又由于CP∥AB,CP⊥CB,AB=BC

∴正方形ABCD,∴AD⊥CD,

又PD∩CD=D,故AD⊥底面PCD,

∵AD平面PAD,∴PAD⊥底面PCD

(Ⅱ)解:∵AD∥BC,BC平面PBC,AD平面PBC,∴AD∥平面PBC

∴點A到平面PBC的距離即為點D到平面PBC的距離

又∵PD=DC,E是PC的中點

∴PC⊥DE

由(Ⅰ)知有AD⊥底面PCD,∴有AD⊥DE.

由題意得AD∥BC,故BC⊥DE.

又∵PC∩BC=C

∴DE⊥面PBC.

, ,

又∵AD⊥底面PCD,∴AD⊥CP,

∵AD∥BC,∴AD⊥BC


【解析】(1)證明面面垂直找線面垂直,證明線面垂直找線線垂直。即PD⊥AD,AD⊥CD證明結(jié)論。
(2)證明點A到平面PBC的距離即為點D到平面PBC的距離,利用等體積轉(zhuǎn)化法即可求出結(jié)論。
【考點精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n);
①f(3)=;
②f(n)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)求不等式 的解集;
(2)若關(guān)于 的不等式 的解集為 ,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計x的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十八屆五中全會公報指出:努力促進人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務(wù)水平.為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機調(diào)查了100位30到40歲的公務(wù)員,得到情況如下表:

男公務(wù)員

女公務(wù)員

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;
(2)把以上頻率當(dāng)概率,若從社會上隨機抽取3位30到40歲的男公務(wù)員,記其中生二胎的人數(shù)為X,求隨機變量X的分布列,數(shù)學(xué)期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某高校大學(xué)5000名新生的視力情況,隨機地抽查了該校100名進校新生的視力情況,得到其頻率分布直方圖如右圖,若規(guī)定視力低于5.0的學(xué)生屬[于近視學(xué)生,則估計該校新生中不是近視的人數(shù)約為( 。

A.300人
B.400人
C.600人
D.1000人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a3=3,S7=28,在等比數(shù)列{bn}中,b3=4,b4=8.
(1)求an及bn;
(2)設(shè)數(shù)列{anbn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在梯形ABCD中,∠ADC= ,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,點E在BP上,且EB=2PE.
(1)求證:DP∥平面ACE;
(2)求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin(x+ )﹣ cos(x+ ),若存在x1 , x2 , x3 , …,xn滿足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+… ,則n的最小值為(
A.6
B.10
C.8
D.12

查看答案和解析>>

同步練習(xí)冊答案