20.已知雙曲線${x^2}-\frac{y^2}{3}=1$,過P(2,0)且傾斜角為30°的直線l與雙曲線相交于A,B兩點(diǎn)
(1)寫出直線l的參數(shù)方程.
(2)求|PA|+|PB|的值.

分析 (1)直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t為參數(shù))$.
(2)易知傾斜角為30°的直線l與雙曲線相交于A,B兩點(diǎn),A、B在異支,把直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t為參數(shù))$.代入${x^2}-\frac{y^2}{3}=1$得:$2{t}^{2}+6\sqrt{3}t+9=0$,⇒${t}_{1}+{t}_{2}=-3\sqrt{3}$,${t}_{1}{t}_{2}=\frac{9}{2}$,|PA|+|PB|=|t1-t2|=3.

解答 解:(1)過P(2,0)且傾斜角為30°的直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t為參數(shù))$.
(2)∵雙曲線${x^2}-\frac{y^2}{3}=1$的漸近線為y=$\sqrt{3}$x,其傾斜角為600
∴傾斜角為30°的直線l與雙曲線相交于A,B兩點(diǎn),A、B在異支.
把直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t為參數(shù))$.代入${x^2}-\frac{y^2}{3}=1$得:
$2{t}^{2}+6\sqrt{3}t+9=0$,⇒${t}_{1}+{t}_{2}=-3\sqrt{3}$,${t}_{1}{t}_{2}=\frac{9}{2}$,
$({t}_{1}-{t}_{2})^{2}=({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}$=(-3$\sqrt{3})^{2}$2-4×$\frac{9}{2}=9$.
|PA|+|PB|=|t1-t2|=3.

點(diǎn)評(píng) 本題考查了直線的參數(shù)方程,直線與雙曲線的位置關(guān)系,解題時(shí)要注意參數(shù)的本質(zhì)含義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.給出下列命題:
①函數(shù)y=cos$({x-\frac{3π}{2}})$是奇函數(shù);
②若α、β是第一象限角且α<β,則tanα<tanβ;
③函數(shù)y=tan$({2x+\frac{π}{4}})$的圖象關(guān)于點(diǎn)$({-\frac{3π}{8},0})$對(duì)稱;
④函數(shù)y=2sin$({\frac{π}{4}-2x})$+1的單調(diào)遞增區(qū)間是$[{kπ-\frac{π}{8},kπ+\frac{3π}{8}}]\;({k∈Z})$.
其中正確的命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若log${\;}_{{x}^{2}-\frac{1}{2}}$$\frac{1}{2}$>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若直線$y=\frac{1}{2}$的傾斜角為α,則α( 。
A.等于0B.等于$\frac{π}{6}$C.等于$\frac{π}{2}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列{an+81}是公比為3的等比數(shù)列,其中a1=-78,則數(shù)列{|an|}的前100項(xiàng)和為( 。
A.$\frac{{{3^{101}}-16203}}{2}$B.$\frac{{{3^{100}}-15387}}{2}$C.$\frac{{{3^{101}}-15387}}{2}$D.$\frac{{{3^{100}}-16203}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知兩點(diǎn)A(-1,2),B(m,3),求:
(1)直線AB的斜率k;
(2)求直線AB的方程;
(3)已知實(shí)數(shù)m∈[-$\frac{\sqrt{3}}{3}$-1,$\sqrt{3}$-1],求直線AB的傾斜角α的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.將3個(gè)小球隨機(jī)地投入編號(hào)為1,2,3,4的4個(gè)小盒中(每個(gè)盒子容納的小球的個(gè)數(shù)沒有限制),則1號(hào)盒子中小球的個(gè)數(shù)ξ的期望為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xex-a(x-1)(a∈R)
(1)若函數(shù)f(x)在x=0處有極值,求a的值及f(x)的單調(diào)區(qū)間
(2)若存在實(shí)數(shù)x0∈(0,$\frac{1}{2}$),使得f(x0)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為2,則$\frac{1}{a}+\frac{1}{{{b^{\;}}}}$的最小值為(  )
A.2B.$\frac{8}{3}$C.$\frac{25}{6}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案