4.如圖是函數(shù)y=f(x)圖象的一部分,則函數(shù)y=f(x)的解析式可能為( 。 
A.y=sin(x+$\frac{π}{6}$)B.y=sin(2x-$\frac{π}{6}$)C.y=cos(4x-$\frac{π}{3}$)D.y=cos(2x-$\frac{π}{6}$)

分析 由函數(shù)的最大值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.

解答 解:根據(jù)函數(shù)y=f(x)圖象的一部分,可設(shè)f(x)=sin(ωx+φ),由$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{π}{6}$,可得ω=2,
再根據(jù)五點(diǎn)法作圖可得2×$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,故f(x)=sin(2x+$\frac{π}{3}$)=cos(2x-$\frac{π}{6}$),
故選:D.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最大值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}的通項(xiàng)公式為an=pn+q(n∈N*,P>0).?dāng)?shù)列{bn}定義如下:對(duì)于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=$\frac{1}{2},q=-\frac{2}{3}$,求b3;
(Ⅱ)若p=2,q=-1,求數(shù)列{bm}的前2m項(xiàng)和公式;
(Ⅲ)是否存在p和q,使得bm=4m+1(m∈N*)?如果存在,求p和q的取值范圍;如不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。
A.函數(shù)f(x)有極大值f(-2),無極小值B.函數(shù)f(x)有極大值f(1),無極小值
C.函數(shù)f(x)有極大值f(-2)和極小值f(1)D.函數(shù)f(x)有極大值f(1)和極小值f(-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知四面體ABCD的頂點(diǎn)都在球O的球面上,AD=AC=BD=2,CD=2$\sqrt{2}$,∠BDC=90°,平面ADC⊥平面BDC,則球O的體積為4$\sqrt{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=ln(x+1)-x的單調(diào)遞減區(qū)間為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,則a、b的值為( 。
A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓(x-1)2+(y-1)2=4上到直線y=x+b的距離等于1的點(diǎn)有且僅有2個(gè),則b的取值范圍是( 。
A.(-$\sqrt{2}$,0)U(0,$\sqrt{2}$)B.(-3$\sqrt{2}$,3$\sqrt{2}$)C.(-3$\sqrt{2}$,-$\sqrt{2}$)U($\sqrt{2}$,3$\sqrt{2}$)D.(-3$\sqrt{2}$,-$\sqrt{2}$]U($\sqrt{2}$,3$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若正數(shù)x,y滿足4x+y-1=0,則$\frac{x+y}{xy}$的最小值為( 。
A.12B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,已知內(nèi)角A=$\frac{π}{3}$,邊BC=2$\sqrt{3}$.設(shè)內(nèi)角B=x,面積為y.
(Ⅰ)求函數(shù)y=f(x)的解析式和定義域;
(Ⅱ)求y的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案