精英家教網 > 高中數學 > 題目詳情

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數,簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數”六場傳統(tǒng)文化知識競賽,現有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

【答案】A

【解析】

先計算總分,推斷出,再根據正整數把計算出來,最后推斷出每個人的得分情況,得到答案.

由題可知,且都是正整數

時,甲最多可以得到24分,不符合題意

時,,不滿足

推斷出,

最后得出結論:

甲5個項目得第一,1個項目得第三

乙1個項目得第一,1個項目得第二,4個項目得第三

丙5個項目得第二,1個項目得第三,

所以A選項是正確的.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】據統(tǒng)計,2017年國慶中秋假日期間,黔東南州共接待游客590.23萬人次,實現旅游收入48.67億元,同比分別增長44.57%、55.22%.旅游公司規(guī)定:若公司導游接待旅客,旅游年總收入不低于40(單位:百萬元),則稱為優(yōu)秀導游.經驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導游100名,統(tǒng)計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數分布表如下:

分組

頻數

18

49

24

5

Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?

Ⅱ)若導游的獎金(單位:萬元),與其一年內旅游總收入(單位:百萬元)之間的關系為,求甲公司導游的年平均獎金;

Ⅲ)從甲、乙兩家公司旅游收入在的總人數中,用分層抽樣的方法隨機抽取6人進行表彰,其中有兩名導游代表旅游行業(yè)去參加座談,求參加座談的導游中有乙公司導游的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠生產不同規(guī)格的一種產品,根據檢測標準,其合格產品的質量與尺寸xmm)之間近似滿足關系式b、c為大于0的常數).按照某項指標測定,當產品質量與尺寸的比在區(qū)間內時為優(yōu)等品.現隨機抽取6件合格產品,測得數據如下:

尺寸xmm

38

48

58

68

78

88

質量y (g)

16.8

18.8

20.7

22.4

24

25.5

質量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

Ⅰ)現從抽取的6件合格產品中再任選3件,記為取到優(yōu)等品的件數,試求隨機變量的分布列和期望;

Ⅱ)根據測得數據作了初步處理,得相關統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

。└鶕o統(tǒng)計量,求y關于x的回歸方程;

ⅱ)已知優(yōu)等品的收益(單位:千元)與的關系為,則當優(yōu)等品的尺寸x為何值時,收益的預報值最大?(精確到0.1)

附:對于樣本 ,其回歸直線的斜率和截距的最小二乘估計公式分別為:,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

)當時,判斷在定義域上的單調性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩支籃球隊賽季總決賽采用7場4勝制,每場必須分出勝負,場與場之間互不影響,只要有一隊獲勝4場就結束比賽.現已比賽了4場,且甲籃球隊勝3場.已知甲球隊第5,6場獲勝的概率均為,但由于體力原因,第7場獲勝的概率為

(1)求甲隊分別以,獲勝的概率;

(2)設表示決出冠軍時比賽的場數,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)為二次函數,且

(1)求f(x)的表達式;

(2)判斷函數在(0,+∞)上的單調性,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,,為正三角形.

(1)若點是棱的中點,求證:平面

(2)若平面⊥平面,在(1)的條件下,試求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知直四棱柱的底面是直角梯形,,,、分別是棱、上的動點,且,,.

1)證明:無論點怎樣運動,四邊形都為矩形;

2)當時,求幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學理科成績優(yōu)異,今年參加了數學,物理,化學,生物4門學科競賽.已知該同學數學獲一等獎的概率為,物理,化學,生物獲一等獎的概率都是,且四門學科是否獲一等獎相互獨立.

(1)求該同學至多有一門學科獲得一等獎的概率;

(2)用隨機變量表示該同學獲得一等獎的總數,求的概率分布和數學期望

查看答案和解析>>

同步練習冊答案