已知直線l與橢圓C:交于P、Q兩點(diǎn),以PQ為直徑的圓過橢圓C的右頂點(diǎn)A.

(Ⅰ)設(shè)PQ中點(diǎn)M(x0,y0),求證:

(Ⅱ)求橢圓C的方程.

答案:
解析:

  解:(Ⅰ)設(shè)直線與橢圓交于,

  ,右頂點(diǎn),將代入中整理得

  

  ∴ ∵中點(diǎn)

  ∴,故.  6分

  (Ⅱ)依題意:,則

  又,

  故

  由①②代入③得:

  ∴,∵,則

  故所橢圓方程為.  12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安慶二模)已知直線l:x+y+8=0,圓O:x2+y2=36(O為坐標(biāo)原點(diǎn)),橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
2
,直線l被圓O截得的弦長(zhǎng)與橢圓的長(zhǎng)軸長(zhǎng)相等.
(I)求橢圓C的方程;
(II)過點(diǎn)(3,0)作直線l,與橢圓C交于A,B兩點(diǎn)設(shè)
OS
=
OA
+
OB
(O是坐標(biāo)原點(diǎn)),是否存在這樣的直線l,使四邊形為ASB的對(duì)角線長(zhǎng)相等?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為2
2

(1)求橢圓C的方程;
(2)若過點(diǎn)(2,0)的直線l的與橢圓C交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)∠AOB為銳角時(shí),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆甘肅天水一中高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C的方程為,其離心率為,經(jīng)過橢圓焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為3.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l:與橢圓C交于A、B兩點(diǎn),P為橢圓上的點(diǎn),O為坐標(biāo)原點(diǎn),且滿足,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省模擬題 題型:解答題

已知直線l:與橢圓C:(a>1)交于P,Q兩點(diǎn)。
(1)設(shè)PQ中點(diǎn)M(x0,y0),求證:;
(2)橢圓C的右頂點(diǎn)為A,且A在以PQ為直徑的圓上,求△OPQ的面積(O為坐標(biāo)原點(diǎn))。

查看答案和解析>>

同步練習(xí)冊(cè)答案