分析 利用誘導(dǎo)公式變形,結(jié)合函數(shù)的奇偶性判斷①,分別求解當(dāng)x=$\frac{π}{12}$,$\frac{π}{8}$的函數(shù)值判斷②④,舉例說明③錯(cuò)誤.
解答 解:①函數(shù)y=cos($\frac{2}{3}$x+$\frac{π}{2}}$)=-sin$\frac{2}{3}$x,是奇函數(shù),故命題①正確;
②當(dāng)x=$\frac{π}{12}$時(shí),函數(shù)y=sin(2×$\frac{π}{12}$+$\frac{π}{3}$)=1,
∴命題函數(shù)y=sin(2x+$\frac{π}{3}}$)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)成中心對稱錯(cuò)誤,故命題②不正確;
③若α,β是第一象限角且α<β,則tanα<tanβ,錯(cuò)誤,如α=60°,β=390°,tanα=$\sqrt{3}$,tanβ=$\frac{\sqrt{3}}{3}$,
故命題③不正確;
④當(dāng)x=$\frac{π}{8}$時(shí),函數(shù)y=sin(2×$\frac{π}{8}$+$\frac{5π}{4}$)=-1,故命題④正確.
∴正確的命題是①④.
故答案為:①④.
點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查了三角函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 輸出的a是原來的c,輸出的b是原來的a,輸出的c是原來的b | |
B. | 輸出的a是原來的c,輸出的b是新的x,輸出的c是原來的b | |
C. | 輸出的a是原來的c,輸出的b是新的x,輸出的c是原來的b | |
D. | 輸出的a,b,c均等于x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系 | |
B. | 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高 | |
C. | 線性回歸方程對應(yīng)的直線$\widehat{y}$=$\widehat$x+$\widehat{a}$至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn) | |
D. | 在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ①②③ | D. | ①②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {1,2,3} | C. | {1,2,3,4} | D. | {4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com