7.設(shè)等差數(shù)列{an}的前n項和為Sn,且a3=16,a7=24.
(1)求通項an
(2)若Sn=312,求項數(shù)n.

分析 (1)利用等差數(shù)列的通項公式及其性質(zhì)可得an,
(2)利用等差數(shù)列的求和公式即可得出.

解答 解:(1)∵{an}是等差數(shù)列,∴a7-a3=4d=8,解得d=2.
又∵a3=16,∴an=a3+(n-3)×2=16+2n-6=2n+10,
(2)由(1)可得:a1+2×2=16,解得a1=12.
Sn=$\frac{n(12+2n+10)}{2}$=n2+11n=312,解得n=13.

點評 本題考查了等差數(shù)列的通項公式與求和關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{({\frac{1}{3}})^x}{,_{\;}}_{\;}x≤1\\{log_{\frac{1}{2}}}x{,_{\;}}x>1\end{array}\right.$,則f(f(${\sqrt{2}}$))=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.△ABC中,角A,B,C的對邊分別為a,b,c,且cosC=$\frac{2a-c}{2b}$.
(1)求角B的大小;
(2)若BD為AC邊上的中線,cosA=$\frac{1}{7}$,BD=$\frac{{\sqrt{129}}}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且對任意的n∈N*,都有2Sn=n2+n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ) 數(shù)列{bn}滿足b1=1,2bn+1-bn=0(n∈N*),若cn=anbn,求數(shù)列{cn}的前n項和為Tn;
(Ⅲ)在(Ⅱ)的條件下,問是否存在整數(shù)m,使得對任意的正整數(shù)n,都有m-2<Tn<m+2,若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}滿足an=n2+λn(λ∈R),且a1<a2<a3<…<an<an+1<…,則λ的取值范圍是(-3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}中,a1=t(t≠-1),且an+1=$\left\{\begin{array}{l}{2{a}_{n}+n,n為奇數(shù)}\\{{a}_{n}-\frac{1}{2}n,n為偶數(shù)}\end{array}\right.$.
(1)證明:數(shù)列{a2n+1}是等比數(shù)列;
(2)若數(shù)列{an}的前2n項和為S2n
①當t=1時,求S2n;
②若{S2n}單調(diào)遞增,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在平面上$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=1,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,|$\overrightarrow{OP}$|<$\frac{1}{3}$,則|$\overrightarrow{OA}$|的取值范圍( 。
A.$(0,\frac{{\sqrt{10}}}{3}]$B.$(\frac{{\sqrt{10}}}{3},\frac{{\sqrt{17}}}{3}]$C.$(\frac{{\sqrt{10}}}{3},\sqrt{2}]$D.$(\frac{{\sqrt{17}}}{3},\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=ex+4x-3的零點為x0,則x0所在的區(qū)間是( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.經(jīng)過市場調(diào)查,某門市部的一種小商品在過去的20天內(nèi)的銷售量(件)與價格(元)均為時間t (天)的函數(shù),且日銷售量近似滿足g(t)=80-2t (件),而日銷售量價格近似滿足函數(shù)f(t),且f(t)的圖象為如圖所示的兩線段AB,BC.
(1)直接寫出f(t)的解析式
(2)求出該種商品的日銷售額y與時間t(0≤t≤20)的函數(shù)表達式;
(3)求該種商品的日銷售額y的最大值與最小值.

查看答案和解析>>

同步練習冊答案