2.已知{an}是首項(xiàng)為1,公差為2的等差數(shù)列,Sn表示{an}的前n項(xiàng)和.
(Ⅰ)求an及Sn
(Ⅱ)設(shè){bn}是首項(xiàng)為2的等比數(shù)列,公比q滿(mǎn)足q2-(a4-3)q+S2=0.求{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

分析 (I)利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(II)由(I)得a4=7,S2=4.可得q2-4q+4=0,解得q,再利用等比數(shù)列的求和公式即可得出.

解答 解:(I)∵{an}是首項(xiàng)a1=1,公差d=2的等差數(shù)列,
∴an=a1+(n-1)d=2n-1.
故Sn=1+3+…+(2n-1)=$\frac{n(1+2n-1)}{2}$=n2
(II)由(I)得a4=7,S2=4.
∵q2-(a4-3)q+S2=0,即q2-4q+4=0,
∴(q-2)2=0,從而q=2.
又∵b1=2,{bn}是公比q=2的等比數(shù)列,
∴bn=b1qn-1=2•2n-1=2n
從而{bn}的前n項(xiàng)和Tn=$\frac{2({2}^{n}-1)}{2-1}$=2n+1-2.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.二進(jìn)制數(shù)11111轉(zhuǎn)換成十進(jìn)制數(shù)是31 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若y=f(x)是定義在[1,8]上的單調(diào)遞減函數(shù),且f(2t)-f(t+2)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$.
(1)若a3,m,S3成等比數(shù)列,求m值;      
(2)求a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|x2-2x>0},$B=\{x|\frac{x-2}{2x}≤1\}$,則A∩B=( 。
A.[-2,0)B.(-2,0)∪(2,+∞)C.(-∞,-2]∪(2,+∞)D.[-1,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)是定義在R上周期為2的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=4x-1,則f(log4$\frac{1}{32}$)( 。
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)二次函數(shù)f(x)=x2+ax+b(a、b∈R).
(1)當(dāng)b=1時(shí),求函數(shù)f(x)在[-1,1]上的值域;
(2)若方程f(x)=0有兩個(gè)非整數(shù)實(shí)根,且這兩實(shí)數(shù)根在相鄰兩整數(shù)之間,試證明存在整數(shù)k,使得$|{f(k)}|≤\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.過(guò)(2,2)點(diǎn)與雙曲線x2$-\frac{y^2}{4}=1$有共同漸近線的雙曲線方程為( 。
A.x2$-\frac{y^2}{4}=-1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{x^2}{3}-\frac{y^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知二次函數(shù)f(x)=2x2-(a-2)x-2a2-a,若在區(qū)間[0,1]內(nèi)至少存在一個(gè)實(shí)數(shù)b,使f(b)>0,則實(shí)數(shù)a的取值范圍是(  )
A.(-2,1)B.$(-\frac{1}{2},\;2)$C.$(-2,\;-\frac{1}{2})$D.$(-\frac{1}{2},\;1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案