【題目】,三班共有140名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))

6.5

7

7.5

7

8

9

10

11

4.5

6

7.5

9

10.5

12

1)試估計(jì)班的學(xué)生人數(shù);

2)從班和班抽出的人數(shù)中,各隨機(jī)選取一人,班選出的人記為甲,班選出的人記為乙,假設(shè)所有學(xué)生鍛煉時(shí)間互不影,求該周甲鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)的概率;

3)再?gòu)?/span>,三班中各隨機(jī)抽取一名學(xué)生,設(shè)新抽取的學(xué)生該周鍛煉時(shí)間分別為7,9,8.25(單位:小時(shí)),這3個(gè)新數(shù)據(jù)與表格構(gòu)成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為,試判斷的大。ńY(jié)論不需要證明).

【答案】160;(2(3) .

【解析】

由已知先計(jì)算出抽樣比,進(jìn)而可估計(jì)班的學(xué)生人數(shù);(2)根據(jù)古典概型概率計(jì)算公式,可求出該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)的概率;(3)根據(jù)平均數(shù)的定義,可判斷出

由題意得:三個(gè)班共抽取14個(gè)學(xué)生,其中班抽取6個(gè),

故抽樣比,

班有學(xué)生.

2)從從班和班抽出的學(xué)生中,各隨機(jī)選取一個(gè)人,共有種情況,而且這些情況是等可能發(fā)生的.

當(dāng)甲鍛煉時(shí)間為6.5時(shí),甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)有2種情況;

當(dāng)甲鍛煉時(shí)間為7時(shí),甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)有2種情況;

當(dāng)甲鍛煉時(shí)間為7.5時(shí),甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)有2種情況.

故周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)的概率.

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解中學(xué)生課外閱讀情況,現(xiàn)從某中學(xué)隨機(jī)抽取名學(xué)生,收集了他們一年內(nèi)的課外閱讀量(單位:本)等數(shù)據(jù),以下是根據(jù)數(shù)據(jù)繪制的統(tǒng)計(jì)圖表的一部分.

下面有四個(gè)推斷:

①這名學(xué)生閱讀量的平均數(shù)可能是本;

②這名學(xué)生閱讀量的分位數(shù)在區(qū)間內(nèi);

③這名學(xué)生中的初中生閱讀量的中位數(shù)一定在區(qū)間內(nèi);

④這名學(xué)生中的初中生閱讀量的分位數(shù)可能在區(qū)間內(nèi).

所有合理推斷的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

,解不等式;

若不等式對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;

,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學(xué)、物理原始成績(jī):

用這44人的兩科成績(jī)制作如下散點(diǎn)圖:

學(xué)號(hào)為22號(hào)的同學(xué)由于嚴(yán)重感冒導(dǎo)致物理考試發(fā)揮失常,學(xué)號(hào)為31號(hào)的同學(xué)因故未能參加物理學(xué)科的考試,為了使分析結(jié)果更客觀準(zhǔn)確,老師將兩同學(xué)的成績(jī)(對(duì)應(yīng)于圖中兩點(diǎn))剔除后,用剩下的42個(gè)同學(xué)的數(shù)據(jù)作分析,計(jì)算得到下列統(tǒng)計(jì)指標(biāo):

數(shù)學(xué)學(xué)科平均分為110.5,標(biāo)準(zhǔn)差為18.36,物理學(xué)科的平均分為74,標(biāo)準(zhǔn)差為11.18,數(shù)學(xué)成績(jī)

與物理成績(jī)的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.

(1)若不剔除兩同學(xué)的數(shù)據(jù),用全部44人的成績(jī)作回歸分析,設(shè)數(shù)學(xué)成績(jī)與物理成績(jī)的相關(guān)系數(shù)為,回歸直線為,試分析的大小關(guān)系,并在圖中畫出回歸直線的大致位置;

(2)如果同學(xué)參加了這次物理考試,估計(jì)同學(xué)的物理分?jǐn)?shù)(精確到個(gè)位);

(3)就這次考試而言,學(xué)號(hào)為16號(hào)的同學(xué)數(shù)學(xué)與物理哪個(gè)學(xué)科成績(jī)要好一些?(通常為了比較某個(gè)學(xué)生不同學(xué)科的成績(jī)水平,可按公式統(tǒng)一化成標(biāo)準(zhǔn)分再進(jìn)行比較,其中為學(xué)科原始分,為學(xué)科平均分,為學(xué)科標(biāo)準(zhǔn)差)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級(jí)三個(gè)班共有學(xué)生120名,這三個(gè)班的男女生人數(shù)如下表所示,已知在全年級(jí)中隨機(jī)抽取1名學(xué)生,抽到二班女生的概率是0.2,則_________.現(xiàn)用分層抽樣的方法在全年級(jí)抽取30名學(xué)生,則應(yīng)在三班抽取的學(xué)生人數(shù)為________.

一班

二班

三班

女生人數(shù)

20

男生人數(shù)

20

20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為奇函數(shù), 為偶函數(shù),

(1)求的解析式及定義域;

(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍

(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn)求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷增加,個(gè)人購(gòu)買家庭轎車已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限x與所支出的總費(fèi)用y(萬元)有如表的數(shù)據(jù)資料:

使用年限x

2

3

4

5

6

總費(fèi)用y

2.2

3.8

5.5

6.5

7.0

1)求線性回歸方程

2)估計(jì)使用年限為12年時(shí),使用該款車的總費(fèi)用是多少萬元?

線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為kk為正整數(shù)).

1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三種部件生產(chǎn)需要的時(shí)間;

2)假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐,平面,.

(1)求證:;

(2)當(dāng)幾何體的體積等于時(shí),求四棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案