若函數(shù)y=sinx+f(x)在[-
π
4
,
4
]內(nèi)單調(diào)遞增,則f(x)可以是(  )
A、1B、cosx
C、sinxD、-cosx
分析:A、C在[-
π
4
,
4
]內(nèi)單調(diào)遞增是不正確的;對(duì)于B,y=sinx+cosx,化簡(jiǎn)判斷單調(diào)性即可判斷正誤;y=sinx-cosx=
2
sin(x-
π
4
),求解即可.
解答:解:由題意可知A、C顯然不滿足題意,排除;對(duì)于By=sinx+cosx=
2
sin(x-
π
4
),在[-
π
4
,
4
]內(nèi)不是單調(diào)遞增,所以不正確;
對(duì)于D:y=sinx-cosx=
2
sin(x-
π
4
),-
π
2
≤x-
π
4
π
2
,滿足題意,所以f(x)可以是-cosx.
故選D
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的化簡(jiǎn),三角函數(shù)的單調(diào)性的應(yīng)用,考查計(jì)算能力,?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=sinx+cosx的定義域?yàn)閇a,b],值域?yàn)?span id="sk4l1un" class="MathJye">[-1,
2
],則b-a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=sinx(a<x<b)的值域是[-1,
12
)
,則b-a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=sinx+acosx的一條對(duì)稱(chēng)軸方程為x=
π
4
,則此函數(shù)的遞增區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=sinx,x∈R是增函數(shù),y=cosx,x∈R是減函數(shù),則x的取值范圍是
 
 (用區(qū)間表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案