19.某廠商調(diào)查甲、乙兩種不同型號電視在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖.為了鼓勵賣場,在同型號電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機(jī)的“星級賣場”
(1)求在這10個賣場中,甲型號電視機(jī)的“星級賣場”的個數(shù);
(2)若在這10個賣場中,乙型號電視機(jī)銷售量的平均數(shù)為26.7,求a>b的概率.

分析 (1)由莖葉圖和平均數(shù)的定義可得,即可得到符合“星際賣場”的個數(shù).
(2)記事件A為“a>b”,由題意和平均數(shù)可得a+b=8,列舉可得a和b的取值共9種情況,其中滿足a>b的共4種情況,由概率公式即可得到所求答案.

解答 解:(1)根據(jù)莖葉圖,
得甲組數(shù)據(jù)的平均數(shù)為:$\frac{1}{10}$(10+10+14+18+22+25+27+30+41+43)=24,
由莖葉圖,知甲型號電視機(jī)的“星級賣場”的個數(shù)為5.
(2)記事件A為“a>b”,
∵乙組數(shù)據(jù)的平均數(shù)為26.7,
∴$\frac{1}{10}$[10+18+20+22+23+31+32+(30+a)+(30+b)+43]=26.7,
解得a+b=8.∴a和b取值共有9種情況,它們是:
(0,8 ),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0),
其中a>b有4種情況,它們是:(5,3),(6,2),(7,1),(8,0),
∴a>b的概率P(A)=$\frac{4}{9}$.

點(diǎn)評 本題考查莖葉圖的應(yīng)用,考查概率的求法,考查古典概型、列舉法等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.運(yùn)行如圖程序框圖.
(1)當(dāng)輸入x值等于-1時,求輸出y的值;
(2)當(dāng)輸出y的值最大值時,求輸入x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓C:(x-3)2+(y-4)2=25,圓C上的點(diǎn)到直線l:3x+4y+m=0(m<0)的最短距離為1,若點(diǎn)N(a,b)在直線l位于第一象限的部分,則$\frac{1}{a}+\frac{1}$的最小值為$\frac{{7+4\sqrt{3}}}{55}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高三參加第一次診斷考試后,隨機(jī)抽取了10名學(xué)生的數(shù)學(xué)成績(單位:分),用莖葉圖列舉出來如圖.
(1)求抽取樣本的平均數(shù)$\overline{x}$和樣本方差s2;
(2)對所有學(xué)生得成績統(tǒng)計(jì)發(fā)現(xiàn),數(shù)學(xué)成績X服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline{x}$,σ2近似為樣本方差s2,若從所有學(xué)生中隨機(jī)抽取1名,求該生數(shù)學(xué)成績在(89.7,120.3)的概率.
附:$\sqrt{106}$≈10.30,P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)P是拋物線y2=2x上的動點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A($\frac{7}{2}$,4),則|PA|+|PF|的最小值是( 。
A.$\frac{7}{2}$B.5C.$\frac{9}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)(1-2x)2013=a0+a1x+a2x2+…+a2013x2013 (x∈R).
(1)求a0+a1+a2+…+a2013的值;
(2)求a1+a3+a5+…+a2013的值;
(3)求|a0|+|a1|+|a2|+…+|a2013|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并予以證明;
(3)求f(x)在[3,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=2\sqrt{3}{sin^2}x-{(sinx-cosx)^2}(x∈R)$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=g(x)的圖象,求$g(-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若tanα•tanβ=3,且$sinα•sinβ=\frac{3}{5}$,則cos(α-β)的值為( 。
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

同步練習(xí)冊答案