【題目】已知點(diǎn)A(2,0),拋物線C:x2=4y的焦點(diǎn)為F,射線FA與拋物線C相交于點(diǎn)M,與其準(zhǔn)線相交于點(diǎn)N,則|FM|:|MN|=________.
【答案】
【解析】分析:求出拋物線C的焦點(diǎn)F的坐標(biāo),從而得到AF的斜率k=.過M作MP⊥l于P,根據(jù)拋物線物定義得|FM|=|PM|.Rt△MPN中,根據(jù)tan∠MNP=,從而得到|PN|=2|PM|,進(jìn)而算出|MN|=|PM|,由此即可得到|FM|:|MN|的值.
詳解::∵拋物線C:x2=4y的焦點(diǎn)為F(0,1),點(diǎn)A坐標(biāo)為(2,0)
∴拋物線的準(zhǔn)線方程為l:y=-1,直線AF的斜率為k=,過M作MP⊥l于P,根據(jù)拋物線物定義得|FM|=|PM|∵Rt△MPN中,tan∠MNP=-k=,∴|PN|=2|PM|,
故答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù)a>0,函數(shù)f(x)=ln(1+ax)﹣ .
(1)討論f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)若f(x)存在兩個(gè)極值點(diǎn)x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離多1,記點(diǎn)M的軌跡為C.
(1)求軌跡C的方程;
(2)設(shè)斜率為k的直線l過定點(diǎn)P(﹣2,1),求直線l與軌跡C恰好有一個(gè)公共點(diǎn)、兩個(gè)公共點(diǎn)、三個(gè)公共點(diǎn)時(shí)k的相應(yīng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和.
若三角形的三邊長(zhǎng)分別為,,,求此三角形的面積;
探究數(shù)列中是否存在相鄰的三項(xiàng),同時(shí)滿足以下兩個(gè)條件:此三項(xiàng)可作為三角形三邊的長(zhǎng);此三項(xiàng)構(gòu)成的三角形最大角是最小角的2倍若存在,找出這樣的三項(xiàng),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過點(diǎn)A(-4,4)且焦點(diǎn)在x軸.
(1)求拋物線方程;
(2)直線l過定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,其中k<﹣2.
(1)求函數(shù)f(x)的定義域D(用區(qū)間表示);
(2)討論函數(shù)f(x)在D上的單調(diào)性;
(3)若k<﹣6,求D上滿足條件f(x)>f(1)的x的集合(用區(qū)間表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對(duì)邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com