【題目】若曲線(xiàn)和上分別存在點(diǎn)
和點(diǎn),使得是以原點(diǎn)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在軸上則
范圍是( )
A. B. C. D.
【答案】A
【解析】分析:設(shè)A(x1,y1),B(x2,y2),根據(jù)OA⊥OB可得=0,從而得出a關(guān)于x1+1的函數(shù),求出此函數(shù)的值域即可得出a的范圍.
詳解:設(shè)A(x1,y1),B(x2,y2),則x2=﹣x1,
∴y1=f(x1)=,y2=g(﹣x1)=x12(x1+1)2.
∴=(x1,y1),=(﹣x1,y2),
∵OA⊥OB,∴=0,
即﹣x12+=0,
∴=1,即a=.
∵﹣1<x1<e﹣1,∴<x1+1<e.
令h(x)=(<x<e),則h′(x)=,
∴當(dāng)<x<時(shí),h′(x)<0,當(dāng)<x<e時(shí),h′(x)>0,
∴h(x)在(,)上單調(diào)遞減,在[,e)上單調(diào)遞增,
∴h(x)的最小值為h()=2e,
又h()=4,h(e)=e2,
∴h(x)的值域?yàn)?/span>[2e,e2),即a的范圍為[2e,e2).
故答案為:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過(guò)300):
空氣質(zhì)量指數(shù) | (0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] |
空氣質(zhì)量等級(jí) | 1級(jí)優(yōu) | 2級(jí)良 | 3級(jí)輕度污染 | 4級(jí)中度污染 | 5級(jí)重度污染 | 6級(jí)嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在2016年100天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖,把該直方圖所得頻率估計(jì)為概率.
(Ⅰ)請(qǐng)估算2017年(以365天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿(mǎn)一天按一天計(jì)算);
(Ⅱ)該校2017年6月7、8、9日將作為高考考場(chǎng),若這三天中某天出現(xiàn)5級(jí)重度污染,需要凈化空氣費(fèi)用10000元,出現(xiàn)6級(jí)嚴(yán)重污染,需要凈化空氣費(fèi)用20000元,記這三天凈化空氣總費(fèi)用為X元,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了解該商場(chǎng)某商品近5年日銷(xiāo)售量(單位:件),隨機(jī)抽取近5年50天的銷(xiāo)售量,統(tǒng)計(jì)結(jié)果如下:
日銷(xiāo)售量 | 100 | 150 |
天數(shù) | 30 | 20 |
頻率 |
若將上表中頻率視為概率,且每天的銷(xiāo)售量相互獨(dú)立.則在這5年中:
(1)求5天中恰好有3天銷(xiāo)售量為150件的概率(用分式表示);
(2)已知每件該商品的利潤(rùn)為20元,用X表示該商品某兩天銷(xiāo)售的利潤(rùn)和(單位: 元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開(kāi)始按如下規(guī)則依次取它的項(xiàng):第一次取1;第二次取2個(gè)連續(xù)偶數(shù);第三次取3個(gè)連續(xù)奇數(shù);第四次取4個(gè)連續(xù)偶數(shù);第五次取5個(gè)連續(xù)奇數(shù);……按此規(guī)律取下去,得到一個(gè)子數(shù)列,,……則在這個(gè)子數(shù)列中,第個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線(xiàn)l的極坐標(biāo)方程為 ,曲線(xiàn)C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線(xiàn)C上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線(xiàn)C1 .
(Ⅰ)求曲線(xiàn)C1的直角坐標(biāo)方程;
(Ⅱ)已知直線(xiàn)l與曲線(xiàn)C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知x0= 是函數(shù)f(x)=sin(2x+φ)的一個(gè)極大值點(diǎn),則f(x)的一個(gè)單調(diào)遞減區(qū)間是( )
A.( , )
B.( , )
C.( ,π)
D.( ,π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿(mǎn)足acosC=b﹣ c. (Ⅰ)求角A的大小;
(Ⅱ)若B= ,AC=4,求BC邊上的中線(xiàn)AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正四面體D﹣ABC(所有棱長(zhǎng)均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點(diǎn),AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )
A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分
沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開(kāi)始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過(guò)連接管道全部流到下部容器所需要的時(shí)間稱(chēng)為該沙漏的一個(gè)沙時(shí)。如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長(zhǎng)度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個(gè)一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com