在三棱錐O-ABC中,三條棱OA、OB、OC兩兩互相垂直,且OA=OB=OC,M是AB的中點,則OM與平面ABC所成角的大小是
 
(用反三角函數(shù)表示).
分析:由題意畫出圖象,由于三條棱OA、OB、OC兩兩互相垂直,且OA=OB=OC,所以定點O在底面的投影為底面△ABC的中心即為D,連接OD,
OM,在直角△OMD中求解即可.
解答:精英家教網(wǎng)解:在三棱錐O-ABC中,三條棱OA,OB,OC兩兩互相垂直,
且OA=OB=OC,M是AB邊的中點,
設(shè)|OA|=a,則|AB|=|BC|=|CA|=
2
a
,VO-ABC=
1
6
a3

O點在底面的射影為底面△ABC的中心,
|OD|=
VO-ABC
1
3
S△ABC
=
3
3
a
,又|DM|=
1
3
|MC|=
3
6
a
,
OM與平面ABC所成角的正切是tanθ=
3
3
6
6
=
2
,
故答案為:arctan
2
點評:此題重點考查了三條側(cè)棱兩兩垂直則頂點在底面的投影為底部三角形的垂心,三條側(cè)棱長相等,則頂點在底面的投影為底部三角形的外心,故為其中心這一結(jié)論,另外還考查了直線與平面所成角的概念及反三角知識.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在直角三角形ABC中,AD是斜邊BC上的高,有很多大家熟悉的性質(zhì),例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“
1
|AD|2
=
1
|AB|2
+
1
|AC|2
”等,由此聯(lián)想,在三棱錐O-ABC中,若三條側(cè)棱OA,OB,OC兩兩互相垂直,可以推出哪些結(jié)論?至少寫出兩個結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在Rt△OAB中,∠O=90°,則 cos2A+cos2B=1.根據(jù)類比推理的方法,在三棱錐O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,α、β、γ 分別是三個側(cè)面與底面所成的二面角,則
cos2α+cos2β+cos2γ=1
cos2α+cos2β+cos2γ=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐O-ABC中,OA、OB、OC兩兩垂直,OC=1,OA=x,OB=y,x+y=4,當三棱錐O-ABC的體積最大時,異面直線AB與OC的距離等于
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐O-ABC中,M,N分別是OA,BC的中點,點G是MN的中點,則
OG
可用基底{
OA
,
OB,
OC
}
表示成:
OG
=
1
4
(
OA
+
OB
+
OC
)
1
4
(
OA
+
OB
+
OC
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)給出下列命題,其中正確的命題是
①③④
①③④
(寫出所有正確命題的編號).
①非零向量
a
、
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
a
a
+
b
的夾角為30°;
②已知非零向量
a
、
b
,則“
a
b
>0
”是“
a
、
b
的夾角為銳角”的充要條件;
③命題“在三棱錐O-ABC中,已知
OP
=x
OA
+y
OB
-2
OC
,若點P在△ABC所在的平面內(nèi),則x+y=3”的否命題為真命題;
④若(
AB
+
AC
)•(
AB
-
AC
)=0
,則△ABC為等腰三角形.

查看答案和解析>>

同步練習冊答案