分析 求導(dǎo)數(shù),利用函數(shù)單調(diào)遞增,導(dǎo)數(shù)大于等于0,即可得出結(jié)論.
解答 解:f′(x)=-sin2x+3a(cosx+sinx)+(4a-1),
設(shè)t=cosx+sinx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-1,1],y=-t2+3at+4a≥0恒成立,
∴a≥$\frac{{t}^{2}}{3t+4}$=$\frac{1}{4(\frac{1}{t}+\frac{3}{8})^{2}-\frac{9}{16}}$,不等式右邊的最大值為1,
∴a≥1.
故答案為[1,+∞).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,正確求導(dǎo)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<b<a | B. | a<b<c | C. | a<c<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2) | B. | [0,2) | C. | [-2,0) | D. | (-2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com