已知橢圓C的方程為左、右焦點(diǎn)分別為F1、F2,焦距為4,點(diǎn)M是橢圓C上一點(diǎn),滿(mǎn)足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)P(0,2)分別作直線(xiàn)PA,PB交橢圓C于A,B兩點(diǎn),設(shè)直線(xiàn)PA,PB的斜率分別為k1,k2,,求證:直線(xiàn)AB過(guò)定點(diǎn),并求出直線(xiàn)AB的斜率k的取值范圍。
(Ⅰ)(Ⅱ)或.
解析試題分析:(Ⅰ)在 中,設(shè),,由余弦定理得,
即,即,得.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/44/4/1onj93.png" style="vertical-align:middle;" />,,,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c5/9/swdej.png" style="vertical-align:middle;" />所以,
所以所求橢圓的方程為.
(Ⅱ)顯然直線(xiàn)的斜率存在,設(shè)直線(xiàn)方程為,,
由得,即,
,,
由得,,又,,
則,,
,
那么,
則直線(xiàn)過(guò)定點(diǎn).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/5/tjca23.png" style="vertical-align:middle;" />,,
,
,,
,所以或.
考點(diǎn):直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題;橢圓的標(biāo)準(zhǔn)方程.
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.此類(lèi)題綜合性強(qiáng),要求學(xué)生要有較高地轉(zhuǎn)化數(shù)學(xué)思想的運(yùn)用能力,能將已知條件轉(zhuǎn)化到基本知識(shí)的運(yùn)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩點(diǎn),的距離之和等于,設(shè)點(diǎn)的軌跡為曲線(xiàn),直線(xiàn)過(guò)點(diǎn)且與曲線(xiàn)交于,兩點(diǎn).
(1)求曲線(xiàn)的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,過(guò)作與軸垂直的直線(xiàn)與橢圓交于,而與拋物線(xiàn)交于兩點(diǎn),且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)的直線(xiàn)與橢圓相交于兩點(diǎn)和,
設(shè)為橢圓上一點(diǎn),且滿(mǎn)足(為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn)的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線(xiàn)被所截得的線(xiàn)段的長(zhǎng)為8,求直線(xiàn)的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線(xiàn)的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線(xiàn)與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線(xiàn)的右頂點(diǎn)為A,右焦點(diǎn)為F,右準(zhǔn)線(xiàn)與軸交于點(diǎn)B,且與一條漸近線(xiàn)交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,,過(guò)點(diǎn)F的直線(xiàn)與雙曲線(xiàn)右支交于點(diǎn).
(Ⅰ)求此雙曲線(xiàn)的方程;
(Ⅱ)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系xOy中,橢圓C1: ="1" (a>b>0)的左、右焦點(diǎn)分別為F1、F2, F2也是拋物線(xiàn)C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=.
(1)求C1的方程;
(2)直線(xiàn)l∥OM,與C1交于A、B兩點(diǎn),若·=0,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線(xiàn)過(guò)點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com