已知函數(shù)f(x)=sin
x
2
cos
x
2
+
1
2
sin(x+
π
2
)

(1)寫出f(x)的最小正周期以及單調(diào)區(qū)間;
(2)若函數(shù)h(x)=cos(x+
4
)
,求函數(shù)y=log2(f(x)•h(x))的最大值,以及使其取得最大值的x的集合.
分析:(1)將函數(shù)解析式第一項(xiàng)利用二倍角的正弦函數(shù)公式化簡,第二項(xiàng)利用誘導(dǎo)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),找出ω的值,代入周期公式即可求出函數(shù)的最小正周期,由正弦函數(shù)的單調(diào)區(qū)間列出不等式,即可得出函數(shù)的單調(diào)區(qū)間;
(2)將f(x)及h(x)代入f(x)•h(x)中,利用誘導(dǎo)公式化簡后,再利用二倍角的正弦函數(shù)公式化簡,最后利用誘導(dǎo)公式化為一個(gè)角的余弦函數(shù),由余弦函數(shù)的值域及對數(shù)的運(yùn)算性質(zhì)求出y的最大值,以及此時(shí)x的集合即可.
解答:解:(1)f(x)=
1
2
sinx+
1
2
cosx=
2
2
sin(x+
π
4
),
∵ω=1,∴T=2π;
令-
π
2
+2kπ≤x+
π
4
π
2
+2kπ,k∈Z,解得:-
4
+2kπ≤x≤
π
4
+2kπ,k∈Z,
π
2
+2kπ≤x+
π
4
2
+2kπ,k∈Z,解得:
π
4
+2kπ≤x+
π
4
4
+2kπ,k∈Z,
則f(x)的單調(diào)遞增區(qū)間為[-
4
+2kπ,
π
4
+2kπ],k∈Z;單調(diào)遞減區(qū)間為[
π
4
+2kπ,
4
+2kπ],k∈Z;
(2)∵f(x)•h(x)=
2
2
sin(x+
π
4
)cos(x+
4

=-
2
2
sin(x+
π
4
)cos(x+
π
4
)=-
2
4
sin(2x+
π
2
)=-
2
4
cos2x,
∴y=log2(f(x)•h(x))=log2(-
2
4
cos2x),
∴ymax=log2
2
4
=-
3
2

當(dāng)cos2x=-1,即x={x|x=
π
2
+kπ,k∈Z}時(shí),y取得最大值.
點(diǎn)評:此題考查了兩角和與差的正弦函數(shù)公式,二倍角的正弦、余弦函數(shù)公式,正弦函數(shù)的單調(diào)性,誘導(dǎo)公式,以及余弦函數(shù)的定義域與值域,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時(shí)有x2∈S,給出下列四個(gè)結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
記aij是這個(gè)數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個(gè)數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn
數(shù)列{f(bn)}的前n項(xiàng)和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個(gè)實(shí)數(shù)集合M,若存在實(shí)數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個(gè)上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項(xiàng)組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案