已知|x-1|-|x+2|>m恒成立,求m的取值范圍.
考點:絕對值不等式
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)絕對值函數(shù)的性質(zhì)求出|x-1|-|x+2|的最小值即可得到結(jié)論
解答: 解:設(shè)f(x)=|x-1|-|x+2|,
若當(dāng)x≥1時,f(x)=|x-1|-|x+2|=x-1-x-2=-3,
當(dāng)-2<x<1時,f(x)=|x-1|-|x+2|=-x+1-x-2=-2x-1,
當(dāng)x≤-2時,f(x)=|x-1|-|x+2|=-x+1+x+2=3,
f(x)=
-3,x≥1
-2x-1,-2<x<1
3,x≤-2
,
∴函數(shù)f(x)的最小值為-3,
∴要使|x-1|-|x+2|>m恒成立,
則m≤-3.
點評:本題主要考查絕對值函數(shù)的性質(zhì),利用絕對值函數(shù)的特點構(gòu)造函數(shù),求出函數(shù)的最值是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x2-x>0},B={x|lnx≤0},則(∁UA)∩B=(  )
A、(0,1]
B、(-∞,0)∪(1,+∞)
C、∅
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個幾何體的三視圖(單位:cm)如圖所示,求:
(1)該幾何體的體積;
(2)該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n∈N且n>1,用放縮法證明:1+
1
2
+
1
3
+…+
1
n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意空間四邊形ABCD,E、F分別是AB、CD的中點,求證:
EF
AD
,
BC
平行于同一平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k,則動點P的軌跡為雙曲線;
②過定圓C上動點A作水平直徑所在直線的垂線AB,垂足為點B,若
AM
=
1
2
AB
,則點M的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.
其中真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={x|x=
n
4
+
1
2
,n∈Z},集合Q={x|x=
n
4
,n∈Z},P與Q的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①若銳角α、β滿足cosα>sinβ,則α+β<
π
2
;
②f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),若θ∈(
π
4
,
π
2
)
,則f(sinθ)>f(cosθ);
③要得到函數(shù)y=cos(
x
2
-
π
4
)
的圖象,只需將y=sin
x
2
的圖象向左平移
π
2
個單位;
④函數(shù)f(x)=lnx+3x-6的零點只有1個且屬于區(qū)間(1,2);
⑤若關(guān)于x的不等式ax2+2ax+1>0恒成立,則a∈(0,1);
其中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的體積為( 。
A、
3
B、
π
3
C、
9
D、
16π
9

查看答案和解析>>

同步練習(xí)冊答案