【題目】已知是曲線(xiàn)上動(dòng)點(diǎn)以及定點(diǎn),
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求面積的最小值,并求出相應(yīng)的點(diǎn)的坐標(biāo).
【答案】(1) ;(2) 的面積最小值為1,此時(shí)點(diǎn)坐標(biāo)為.
【解析】
(1)求得導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,即可求得斜率和切點(diǎn)坐標(biāo),根據(jù)點(diǎn)斜式即可寫(xiě)出切線(xiàn)方程;
(2)由坐標(biāo)即可求得直線(xiàn)方程, 當(dāng)點(diǎn)P為與平行且且與曲線(xiàn)相切的直線(xiàn)的切點(diǎn)時(shí), 面積的最小值,根據(jù)導(dǎo)數(shù)的幾何意義即可求得切點(diǎn),利用點(diǎn)到直線(xiàn)距離公式即可求得P到AB的距離,進(jìn)而求得面積.
解: ,,.
(1)當(dāng),,,即切點(diǎn)為,切線(xiàn)方程為,化簡(jiǎn)得: .
(2)直線(xiàn)的方程為:,設(shè)與平行且與曲線(xiàn)相切的直線(xiàn)為即,解得:,則切點(diǎn)為,即點(diǎn)坐標(biāo)為時(shí), 的面積最小,, 到直線(xiàn):的距離為,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著我市經(jīng)濟(jì)的快速發(fā)展,政府對(duì)民生越來(lái)越關(guān)注市區(qū)現(xiàn)有一塊近似正三角形的土地(如圖所示),其邊長(zhǎng)為2百米,為了滿(mǎn)足市民的休閑需求,市政府?dāng)M在三個(gè)頂點(diǎn)處分別修建扇形廣場(chǎng),即扇形和,其中與、分別相切于點(diǎn),且與無(wú)重疊,剩余部分(陰影部分)種植草坪.設(shè)長(zhǎng)為(單位:百米),草坪面積為(單位:萬(wàn)平方米).
(1)試用分別表示扇形和的面積,并寫(xiě)出的取值范圍;
(2)當(dāng)為何值時(shí),草坪面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幾何體的平面展開(kāi)圖,其中四邊形為正方形,分別為的中點(diǎn).在此幾何體中,給出下列結(jié)論,其中正確的結(jié)論是( )
A.平面平面B.直線(xiàn)平面
C.直線(xiàn)平面D.直線(xiàn)平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABCA1B1C1中(側(cè)棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=,D 是A1B1的中點(diǎn).
(1)求證:C1D⊥平面AA1B1B;
(2)當(dāng)點(diǎn)F 在BB1上的什么位置時(shí),AB1⊥平面C1DF ?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,PA垂直于⊙O所在的平面,M為圓周上任意一點(diǎn),AN⊥PM,N為垂足.
(1)求證:AN⊥平面PBM;
(2)若AQ⊥PB,垂足為Q,求證:NQ⊥PB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高二年級(jí)組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車(chē)前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車(chē),自行打車(chē)的平均時(shí)間為 (單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:
(1)當(dāng)在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車(chē)的平均時(shí)間?
(2)求該校學(xué)生參加考試平均時(shí)間的表達(dá)式:討論的單調(diào)性,并說(shuō)明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)寫(xiě)出直線(xiàn)l和曲線(xiàn)C的普通方程;
(Ⅱ)已知點(diǎn)P為曲線(xiàn)C上的動(dòng)點(diǎn),求P到直線(xiàn)l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 是上一點(diǎn),且.
(1)求證: 平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中, 和是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com