19.等差數(shù)列{an}和等比數(shù)列{bn}的首項為相等的正數(shù),若a2n+1=b2n+1,則an+1與bn+1的關(guān)系為( 。
A.an+1≥bn+1B.an+1>bn+1C.an+1<bn+1D.an+1≤bn+1

分析 直接由等差中項和等比中項的概念結(jié)合基本不等式求解.

解答 解:設(shè)a1=b1=m>0,a2n+1=b2n+1=t,
則${a}_{n+1}=\frac{{a}_{1}+{a}_{2n+1}}{2}=\frac{m+t}{2}$,
$_{n+1}=\sqrt{_{1}_{2n+1}}=\sqrt{mt}$,
∴t>0,
則由基本不等式可得:an+1≥bn+1
故選:A.

點評 本題考查等差數(shù)列和等比數(shù)列的通項公式,考查了等差數(shù)列和等比數(shù)列的性質(zhì),訓(xùn)練了基本不等式的應(yīng)用,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.在R上定義運算?:x?y=(1-x)(1+y)若不等式(x-a)?(x+a)<1對任意實數(shù)x成立,則( 。
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={1,a},B={x|x2-5x+4<0,x∈Z},若A∩B≠∅,則a等于(  )
A.2B.3C.2或4D.2或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.拋物線頂點在原點,對稱軸是x軸,點(-5,4)到焦點的距離為5,則拋物線方程為( 。
A.y2=-16xB.y2=-8x或y2=-32xC.y2=-4xD.y2=-4x或y2=-36x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在△ABC中,已知cosA=$\frac{5}{13}$,tan$\frac{B}{2}$+cot$\frac{B}{2}$=$\frac{10}{3}$,c=21.
(1)求cos(A-B)的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知向量$\overrightarrow m$=(λ+1,1),$\overrightarrow n$=(4,-2),若$\overrightarrow m∥\overrightarrow n$,則λ=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.等比數(shù)列{an}的前n項和為Sn,且a2=3,a5=81,等差數(shù)列{bn}的前n項和為Tn,Tn=$\frac{3}{2}{n^2}-\frac{9}{2}$n.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若對任意的n∈N*,$({S_n}+\frac{1}{2})•k$≥bn恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E是PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)AP=1,AD=$\sqrt{3}$,三棱錐P-ABD的體積V=$\frac{{\sqrt{3}}}{4}$,求A到平面PBC的距離.
(Ⅲ)在(Ⅱ)的條件下求直線AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.橢圓11x2+20y2=220的焦距為(  )
A.3B.6C.2$\sqrt{31}$D.$\sqrt{31}$

查看答案和解析>>

同步練習冊答案