成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前n項(xiàng)和為,求證:數(shù)列是等比數(shù)列.

(1)(2)證明過(guò)程見(jiàn)試題解析.

解析試題分析:(1)設(shè)成等差數(shù)列的三個(gè)正數(shù)分別為,可得,又成等比,可得方程,則等比數(shù)列的三項(xiàng)進(jìn)一步求公比,可得通項(xiàng)公式.(2)等比數(shù)列前n項(xiàng)和為,由可知數(shù)列是等比數(shù)列.
試題解析:解:(1)設(shè)成等差數(shù)列的三個(gè)正數(shù)分別為
依題意,得
所以中的依次為
依題意,有(舍去)
的第3項(xiàng)為5,公比為2.

所以是以為首項(xiàng),2為以比的等比數(shù)列,其通項(xiàng)公式為        6分
(2)數(shù)列的前項(xiàng)和,即
所以
所以,數(shù)列是等比數(shù)列.         12分
考點(diǎn):等差數(shù)列定義,等比數(shù)列的定義,等比數(shù)列的前n項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù), 數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)一切成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,
(1)證明:數(shù)列是等差數(shù)列,并求;
(2)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,
已知,,,是數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;(2)求;
(3)求滿足的最大正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從數(shù)列中抽出一些項(xiàng),依原來(lái)的順序組成的新數(shù)列叫數(shù)列的一個(gè)子列.
(1)寫(xiě)出數(shù)列的一個(gè)是等比數(shù)列的子列;
(2)設(shè)是無(wú)窮等比數(shù)列,首項(xiàng),公比為.求證:當(dāng)時(shí),數(shù)列不存在
是無(wú)窮等差數(shù)列的子列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列中,已知 .
(1)求數(shù)列的通項(xiàng)公式;
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),試求數(shù)列的通項(xiàng)公式及前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,且對(duì)任意的成等比數(shù)列,其公比為
(1)若;
(2)若對(duì)任意的成等差數(shù)列,其公差為
①求證:成等差數(shù)列,并指出其公差;
②若,試求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,已知,且對(duì)一切都成立.
(1)若λ = 1,求數(shù)列的通項(xiàng)公式;
(2)求λ的值,使數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案