如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O為BC的中點.
(1)求證:AO∥平面DEF;
(2)求證:平面DEF⊥平面BCED;
(3)求平面DEF與平面ABC相交所成銳角二面角的余弦值.

證明:(1)取DE中點G,以BC中點O為原點,OC、OA分別為x、y軸,
建系如圖空間坐標(biāo)系,則可得
A(0,,0)、B(-1,0,0)、C(1,0,0)、
D(-1,0,1),E(1,0,3)、F(0,,2)、G(0,0,2),
=(2,0,2),=(1,,1).
設(shè)平面DEF的一法向量=(x,y,z),
,取x=1,則y=0,z=-1,
可得=(1,0,-1),
=(0,,0),=0,
.又OA?平面DEF,
∴OA∥平面DEF.
(2)因為直線AO是平面BCDE的一條垂線,
∴平面BCED的一法向量為=(0,,0),
=0,平面BCED的法向量與平面DEF的法向量互相垂直
∴平面DEF⊥平面BCED
(3)由(1)知平面DEF的一個法向量=(1,0,-1),
平面ABC即xoy坐標(biāo)平面,可得它的一個法向量=(0,0,1),
=-1,==1
∴cos<,>==-
∴求平面DEF與平面ABC相交所成銳角二面角的余弦值為|cos<>|=
分析:(1)取DE中點G,以BC中點O為原點,OC、OA分別為x、y軸,建系如圖空間坐標(biāo)系,則得出A、B、C、D、E、F、G各點的坐標(biāo),則有=(2,0,2),=(1,,1).然后用數(shù)量積為0的方法,得到平面DEF的一個法向量為=(1,0,-1),從而有=0,證出OA∥平面DEF;
(2)平面BCED的一法向量為=(0,,0),可算出=0,平面BCED的法向量與平面DEF的法向量互相垂直,從而得到平面DEF⊥平面BCED;
(3)平面DEF的一個法向量=(1,0,-1),平面ABC的一個法向量=(0,0,1),利用向量數(shù)量的坐標(biāo)公式,可得cos<,>==-,從而得到平面DEF與平面ABC相交所成銳角二面角的余弦值
點評:本題利用空間坐標(biāo)的方法證明了線面平行、面面垂直,并且計算了兩個平面所成的銳二面角的余弦值,著重考查了用空間向量解決立體幾何中平面間的夾角和平行垂直的證明有關(guān)知識點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O為AB的中點.
(Ⅰ)求平面DEF與平面ABC相交所成銳角二面角的余弦值;
(Ⅱ)在DE上是否存在一點P,使CP⊥平面DEF?如果存在,求出DP的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、如圖所示的幾何體是由一個正三棱錐P-ABC與正三棱柱ABC-A1B1C1組合而成,現(xiàn)用3種不同顏色對這個幾何體的表面染色(底面A1B1C1不涂色),要求相鄰的面均不同色,則不同的染色方案共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體是由以正三角形ABC為底面的直棱柱被平面 DEF所截而得.AB=2,BD=1,CE=3,AF=a,O為AB的中點.
(1)當(dāng)a=4時,求平面DEF與平面ABC的夾角的余弦值;
(2)當(dāng)a為何值時,在棱DE上存在點P,使CP⊥平面DEF?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O為BC的中點.
(1)求證:AO∥平面DEF;
(2)求證:平面DEF⊥平面BCED;
(3)求平面DEF與平面ABC相交所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,BD=1,AF=2,CE=3,O為AB的中點.
(1)求證:OC⊥DF;
(2)試問線段CE上是否存在一點P,使得OP∥平面DEF?若存在,求出CP的長度,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案